scholarly journals Sources of nitrous acid (HONO) in the upper boundary layer and lower free troposphere of North China Plain: insights from the Mount Tai Observatory

2020 ◽  
Author(s):  
Ying Jiang ◽  
Likun Xue ◽  
Rongrong Gu ◽  
Mengwei Jia ◽  
Yingnan Zhang ◽  
...  

Abstract. Nitrous acid (HONO) is a significant precursor of atmospheric detergent OH radicals, and plays a vital role in tropospheric chemistry. The current knowledge about the daytime HONO sources is incomplete, and its impact on the tropospheric radical chemistry has not been fully quantified. Existing observational studies of HONO were mostly conducted at surface, with few efforts focusing on the high-elevation atmospheres. In order to better understand the characteristics and sources of HONO in the upper boundary layer and lower free troposphere, two intensive field observations were carried out at the summit of Mt. Tai (1534 m a.s.l.), the peak of the North China Plain, in winter 2017 and spring 2018. HONO showed moderate concentration levels (0.15 ± 0.15 and 0.13 ± 0.15 ppbv), with maximum values of 1.14 and 3.23 ppbv in winter and spring, respectively. Diurnal variation patterns with a broad noontime maximum and lower nighttime concentrations were observed during both campaigns, which is distinct from most of the previous studies at the ground level. The WRF-FLEXPART simulations indicated the combined effects of the planetary boundary layer evolution and valley breeze on the daytime HONO peak. A photostationary state (PSS) analysis suggested the strong unknown daytime HONO source with production rates of 0.45 ± 0.25 ppb/h in winter and 0.64 ± 0.49 ppb/h in spring. Correlation analysis supported the important role of photo-enhanced heterogeneous conversion of NO2 to HONO on the aerosol surface at this high-elevation site. HONO photolysis is the predominant primary source of OH radical and plays a major role in the radical chemistry at Mt. Tai. The model only considering homogenous HONO source would largely underestimate the HOx radical levels and atmospheric oxidation capacity in the high-altitude atmosphere. This study shed light on the characteristics, sources, chemistry, and impacts of HONO in the upper boundary layer and lower free troposphere in the NCP region.

2020 ◽  
Vol 20 (20) ◽  
pp. 12115-12131
Author(s):  
Ying Jiang ◽  
Likun Xue ◽  
Rongrong Gu ◽  
Mengwei Jia ◽  
Yingnan Zhang ◽  
...  

Abstract. Nitrous acid (HONO) is a significant precursor of atmospheric “detergent” OH radicals and plays a vital role in tropospheric chemistry. The current knowledge about daytime HONO sources is incomplete, and its impact on the tropospheric radical chemistry has not been fully quantified. Existing observational studies of HONO were mostly conducted at the surface, with few efforts focusing on the high-elevation atmosphere. In order to better understand the characteristics and sources of HONO in the upper boundary layer and lower free troposphere, two intensive field observations were carried out at the summit of Mt. Tai (1534 m a.s.l.), the peak of the North China Plain (NCP), in winter 2017 and spring 2018. HONO showed moderate concentration levels (average ± standard deviation: 0.15±0.15 and 0.13±0.15 ppbv), with maximum values of 1.14 and 3.23 ppbv in winter and spring, respectively. Diurnal variation patterns with broad noontime maxima and lower nighttime concentrations were observed during both campaigns, which is distinct from most of the previous studies at the ground level. The Lagrangian particle dispersion model (LPDM, WRF-FLEXPART v3.3) simulations indicated the combined effects of the planetary boundary layer evolution and valley breeze on the daytime HONO peak. A photostationary state (PSS) analysis suggested a strong unknown daytime HONO source with production rates of 0.45±0.25 ppb h−1 in winter and 0.64±0.49 ppb h−1 in spring. Correlation analysis supported the important role of photo-enhanced heterogeneous conversion of NO2 to HONO on the aerosol surface at this high-elevation site. HONO photolysis is the predominant primary source of OH radical and plays a major role in the radical chemistry at Mt. Tai. The model only considering a homogenous HONO source predicted much lower levels of the HOx radicals and atmospheric oxidation capacity than the model constrained with measured HONO data. This study sheds light on the characteristics, sources, chemistry, and impacts of HONO in the upper boundary layer and lower free troposphere in the NCP region.


2018 ◽  
Author(s):  
Tianning Su ◽  
Zhanqing Li ◽  
Ralph Kahn

Abstract. The frequent occurrence of severe air pollution episodes in China has raised great concerns with the public and scientific communities. Planetary boundary layer height (PBLH) is a key factor in the vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and surface pollutants, especially particulate matter (PM) concentration, across the whole of China, is not yet well understood. We investigate this issue at ~ 1500 surface stations using PBLH derived from space-borne and ground-based lidar, and discuss the influence of topography and meteorological variables on the PBLH-PM relationship. A generally negative correlation is observed between PM and the PBLH, albeit varying greatly in magnitude with location and season. Correlations are much weaker over the highlands than plains regions, which may be associated with lower pollution levels and mountain breezes. The influence of horizontal transport on surface PM is considered as well, manifested as a negative correlation between surface PM and wind speed over the whole nation. Strong wind with clean upwind sources plays a dominant role in removing pollutants, and leads to weak PBLH-PM correlation. A ventilation rate is introduced to jointly consider horizontal and vertical dispersion, which has the largest impact on surface pollutant accumulation over the North China Plain. Aerosol absorption feedbacks also appear to affect the PBLH-PM relationship, as revealed via comparing air pollution in Beijing and Hong Kong. Absorbing aerosols in high concentrations likely contribute to the significant PBLH-PM correlation over the North China Plain (e.g., during winter). As major precursor emissions for secondary aerosols, sulfur dioxide, nitrogen dioxide, and carbon monoxide have similar negative responses to increased PBLH, whereas ozone is positively correlated with PBLH over most regions, which may be caused by heterogeneous reactions and photolysis rates.


2018 ◽  
Author(s):  
Wanyun Xu ◽  
Ye Kuang ◽  
Chunsheng Zhao ◽  
Jiangchuan Tao ◽  
Gang Zhao ◽  
...  

Abstract. The study of atmospheric nitrous acid (HONO), which is the primary source of OH radicals, is crucial to atmospheric photochemistry and heterogeneous chemical processes. The heterogeneous NO2 chemistry under haze conditions was pointed out to be one of the missing sources of HONO on the North China Plain, producing sulfate and nitrate in the process. However, controversy exists between various proposed mechanisms, mainly debating on whether SO2 directly takes part in the HONO production process and what roles NH3 and the pH value play in it. In this paper, never before seen explosive HONO production (maximum rate: 16 ppb/hour) was reported and evidence was found for the first time in field measurements during fog episodes (usually with pH > 5) and haze episodes under high relative humidity (usually with pH 


2016 ◽  
Author(s):  
Huiting Mao ◽  
Irene Cheng ◽  
Leiming Zhang

Abstract. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL), the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring-summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and mountain-valley winds at high elevation sites. Oxidation of GEM and entrainment of GOM from the free troposphere influenced the diurnal patterns of GOM at continental sites. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion, increased surface emissions during summer, and monsoons in Asia. GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition appeared to affect the seasonal pattern of GOM at continental sites. Since measurements were predominantly in the northern hemisphere (NH), increased PBM at continental sites during winter was primarily due to local/regional coal combustion and wood burning emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend consistent with those of anthropogenic and natural emissions and potentially redox chemistry. The latitudinal gradient in TGM/GEM showed an increase from the southern to northern hemisphere due largely to the vast majority of Hg emissions in the NH. This gradient was insignificant during summer probably as a result of weaker meridional mixing. Aircraft measurements indicated no significant GEM gradient with altitude over the field campaign regions; however depletion of GEM was observed in air masses under stratospheric influence. Remaining questions and issues related to factors potentially contributing to the observed spatiotemporal variations were identified, and recommendations for future research needs were provided.


Sign in / Sign up

Export Citation Format

Share Document