scholarly journals Introducing Ice Nucleating Particles functionality into the Unified Model and its impact on the Southern Ocean short-wave radiation biases

2021 ◽  
Author(s):  
Vidya Varma ◽  
Olaf Morgenstern ◽  
Kalli Furtado ◽  
Paul Field ◽  
Jonny Williams

Abstract. Insufficient reflection of short-wave radiation especially over the Southern Ocean region is still a leading issue in many present-day global climate models. One of the potential reasons for this observed bias is an inadequate representation of clouds. In a previous study, we modified the cloud micro-physics scheme in the Unified Model and showed that choosing a more realistic value for the capacitance or shape parameter of atmospheric ice-crystals, in better agreement with theory and observations, benefits the simulation of short-wave radiation over the Southern Ocean by brightening the clouds. However, attempts to modify the cloud phase by directly adjusting the micro-physics process rates like capacitance tend to affect both the hemispheres symmetrically whereas we seek to brighten only the high-latitude Southern Hemisphere clouds. In this study we implement a simple prognostic parametrisation whereby the heterogeneous ice nucleation temperature is made to vary three-dimensionally as a function of the mineral dust distribution in the model. As a result, those regions with less dust number density would have lower nucleation temperature compared to the default global value of −10 °C. By using mineral dust as an indicator for ice nucleating particles in the model, this parametrisation thus captures the impact of ice nucleating particles on the cloud distribution due to its general paucity over the Southern Ocean region. This approach thus improves the physics of the model with minimal complexity.

2019 ◽  
Author(s):  
Vidya Varma ◽  
Olaf Morgenstern ◽  
Paul Field ◽  
Kalli Furtado ◽  
Jonny Williams ◽  
...  

Abstract. The present generation of global climate models is characterized by insufficient reflection of short-wave radiation over the Southern Ocean due to a misrepresentation of clouds. This is a significant concern as it leads to excessive heating of the ocean surface, sea surface temperature biases, and subsequent problems with atmospheric dynamics. In this study we modify cloud micro-physics in a recent version of the Met Office's Unified Model and show that choosing a more realistic value for the shape parameter of atmospheric ice-crystals, in better agreement with theory and observations, benefits the simulation of short-wave radiation. In the model, for calculating the growth rate of ice crystals through deposition, the default assumption is that all ice particles are spherical in shape. We modify this assumption to effectively allow for oblique shapes or aggregates of ice crystals. Along with modified ice nucleation temperatures, we achieve a reduction in the annual-mean short-wave cloud radiative effect over the Southern Ocean by up to 4 W/m2, and seasonally much larger reductions. By slowing the growth of the ice phase, the model simulates substantially more supercooled liquid cloud. We hypothesize that such abundant supercooled liquid cloud is the result of a paucity of ice nucleating particles in this part of the atmosphere.


2020 ◽  
Vol 20 (13) ◽  
pp. 7741-7751
Author(s):  
Vidya Varma ◽  
Olaf Morgenstern ◽  
Paul Field ◽  
Kalli Furtado ◽  
Jonny Williams ◽  
...  

Abstract. The present generation of global climate models is characterised by insufficient reflection of short-wave radiation over the Southern Ocean due to a misrepresentation of clouds. This is a significant concern as it leads to excessive heating of the ocean surface, sea surface temperature biases and subsequent problems with atmospheric dynamics. In this study, we modify cloud microphysics in a recent version of the Met Office's Unified Model and show that choosing a more realistic value for the shape parameter of atmospheric ice crystals, in better agreement with theory and observations, benefits the simulation of short-wave radiation. In the model, for calculating the growth rate of ice crystals through deposition, the default assumption is that all ice particles are spherical in shape. We modify this assumption to effectively allow for oblique shapes or aggregates of ice crystals. Along with modified ice nucleation temperatures, we achieve a reduction in the annual-mean short-wave cloud radiative effect over the Southern Ocean by up to ∼4 W m−2 and seasonally much larger reductions compared to the control model. By slowing the growth of the ice phase, the model simulates substantially more supercooled liquid cloud.


This research investigates the impact of rooftop vegetation on the phenomenon of urban heat island (UHI) in hot-aired microclimates with an emphasis on housing projects in the context of Baghdad city. The methodology of this research relies on ENVI-met Headquarter 4.4.5 to create models that simulate and comparatively analyze the effect of rooftop vegetation on reduction UHI within housing projects. The analysis encompassed models of low-rise, mid-rise, and high-rise buildings. The simulated climatic parameters included the Predicted Mean Vote (PMV), air temperature, mean radiant temperature (MRT), reflected short-wave radiation, and humidity. The findings of this research indicated that rooftop vegetation can participate in the reduction of UHI phenomenon in housing projects, the most significant for almost all climatic parameters results were in low-rise and mid-rise buildings as compared to high-rise buildings.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.


1971 ◽  
Vol 10 (58) ◽  
pp. 101-104 ◽  
Author(s):  
M.P. Langleben

AbstractTwo Kipp hemispherical radiometers mounted back to back and suspended by an 18 m cable from a helicopter flying at an altitude of about 90 m were used to make measurements of incident and reflected short-wave radiation. The helicopter was brought to a hovering position at the instant of measurement to ensure that the radiometers were in the proper attitude and a photograph of the ice cover was taken at the same time. The observations were made in 1969 during 16 flights out of Tuktoyaktuk, Northwest Territories (lat. 69° 26’N., long. 133° 02’W.) over the fast ice extending 80 km north of Tuktoyaktuk. Values of albedo of the ice cover were found to decrease during the melting period according to the equation A = 0.59 —0.32P where P is the degree of puddling of the surface.


1974 ◽  
Vol 20 (4) ◽  
pp. 434-438
Author(s):  
E. M. Golubev ◽  
N. N. Ogurtsova ◽  
I. V. Podmoshenskii ◽  
P. N. Rogovtsev

2021 ◽  
Author(s):  
Lotfi Aouf ◽  
Daniele Hauser ◽  
Stephane Law-Chune ◽  
Bertrand chapron ◽  
Alice Dalphinet ◽  
...  

<p>The Southern ocean is a complex ocean region with uncertainties related to surface wind forcing and fluxes exchanges at the air/sea interface. The improvement of wind wave generation in this ocean region is crucial for climate studies. With CFOSAT satellite mission, the SWIM instrument provides directional wave spectra for wavelengths from 70 to 500 m, which shed light on the role of correcting the wave direction and peak wave number of dominant wave trains in the wind-waves growth phase. This consequently induced a better energy transfer between waves and a significant bias reduction of wave height in the Southern Ocean (Aouf et al. 2020). The objective of this work is to extend the analysis of the impact of the assimilation of wave number components from SWIM wave partitions on the ocean/wave coupling. To this end, coupled simulations of the wave model MFWAM and the ocean model NEMO are performed during the southern winter period of 2019 (May-July). We have examined the MFWAM/NEMO coupling with and without the assimilation of the SWIM mean wave number components. Several coupling processes related to Stokes drift, momentum flux stress and wave breaking inducing turbulence in the ocean mixing layer have been analyzed. We also compared the coupled runs with a control run without wave forcing in order to evaluate the impact of the assimilation. The results of coupled simulations have been validated with satellite Sea Surface Temperature and available surface currents data over the southern ocean. We also investigated the impact of the assimilation during severe storms with unlimited fetch conditions.</p><p>Further discussions and conclusions will be commented in the final paper.</p><p>Aouf L., New directional wave satellite observations : Towards improved wave forecasting and climate description in Southern Ocean, Geophysical Research Letters, DOI: 10.1029/2020GL091187 (in production).</p><p> </p><div> <div> <div></div> <div>What do you want to do ?</div> New mail</div> </div><div><img></div>


Sign in / Sign up

Export Citation Format

Share Document