scholarly journals Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective transfer and high enrichments

2021 ◽  
Vol 21 (6) ◽  
pp. 4267-4283
Author(s):  
Nadja Triesch ◽  
Manuela van Pinxteren ◽  
Sanja Frka ◽  
Christian Stolle ◽  
Tobias Spranger ◽  
...  

Abstract. In the marine environment, measurements of lipids as representative species within different lipid classes have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. The set of lipid classes includes hydrocarbons (HC); fatty acid methyl esters (ME); free fatty acids (FFA); alcohols (ALC); 1,3-diacylglycerols (1,3 DG); 1,2-diacylglycerols (1,2 DG); monoacylglycerols (MG); wax esters (WE); triacylglycerols (TG); and phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), as well as glycolipids (GL) which cover sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST). These introduced lipid classes have been analyzed in the dissolved and particulate fraction of seawater, differentiating between underlying water (ULW) and the sea surface microlayer (SML) on the one hand. On the other hand, they have been examined on ambient submicrometer aerosol particle samples (PM1) which were collected at the Cape Verde Atmospheric Observatory (CVAO) by applying concerted measurements. These different lipids are found in all marine compartments but in different compositions. Along the campaign, certain variabilities are observed for the concentration of dissolved (∑DLULW: 39.8–128.5 µg L−1, ∑DLSML: 55.7–121.5 µg L−1) and particulate (∑PLULW: 36.4–93.5 µg L−1, ∑PLSML: 61.0–118.1 µg L−1) lipids in the seawater of the tropical North Atlantic Ocean. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured. As also bacteria – besides phytoplankton sources – influence the lipid concentrations in seawater and on the aerosol particles, the lipid abundance cannot be exclusively explained by the phytoplankton tracer (chlorophyll a). The concentration and enrichment of lipids in the SML are not related to physicochemical properties which describe the surface activity. On the aerosol particles, an EFaer (the enrichment factor on the submicrometer aerosol particles compared to the SML) between 9×104–7×105 is observed. Regarding the individual lipid groups on the aerosol particles, a statistically significant correlation (R2=0.45, p=0.028) was found between EFaer and lipophilicity (expressed by the KOW value), which was not present for the SML. But simple physicochemical descriptors are overall not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean–atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extent of the enrichment of the lipid class constituents on the aerosol particles might be related to the distribution of the lipid within the bubble–air–water interface. The lipids TG and ALC which are preferably arranged within the bubble interface are transferred to the aerosol particles to the highest extent. Finally, the connection between ice nucleation particles (INPs) in seawater, which are already active at higher temperatures (−10 to −15 ∘C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred into the atmosphere.

2020 ◽  
Author(s):  
Nadja Triesch ◽  
Manuela van Pinxteren ◽  
Sanja Frka ◽  
Christian Stolle ◽  
Tobias Spranger ◽  
...  

Abstract. Measurements of lipids as representative species for different lipid classes in the marine environment have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. To this end, a set of lipid classes (hydrocarbons (HC), fatty acid methyl esters (ME), free fatty acids (FFA), alcohols (ALC), 1,3-diacylglycerols (1,3 DG), 1,2-diacylglycerols (1,2 DG), monoacylglycerols (MG), wax esters (WE), triacylglycerols (TG), phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), glycolipids (GL) including sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST)) is investigated in both the dissolved and particulate fraction in seawater, differentiated between underlying water (ULW) and the sea surface microlayer (SML), and in ambient submicron aerosol particle samples (PM1) at the Cape Verde Atmospheric Observatory (CVAO) applying concerted measurements. The different lipids are found in all marine compartments but in different compositions. At this point, a certain variability is observed for the concentration of dissolved (∑DLULW: 39.8–128.5 μg L−1, ∑DLSML: 55.7–121.5 μg L−1) and particulate (∑PLULW: 36.4–93.5 μg L−1, ∑PLSML: 61.0–118.1 μg L−1) lipids in seawater of the tropical North Atlantic Ocean along the campaign. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured with high atmospheric concentration of TG (averaged: 21.9 ng m−3) as a potential indicator for freshly emitted sea spray. Besides phytoplankton sources, bacteria influence the lipid concentrations in seawater and on the aerosol particles, so that the phytoplankton tracer (chlorophyll-a) cannot sufficiently explain the lipid abundance. The concentration and enrichment of lipids in the SML is not related to physicochemical properties describing the surface activity. For aerosol, however, the high enrichment of lipids (as a sum) corresponds well with the consideration of their high surface activity, thus the EFaer (enrichment factor on submicron aerosol particles compared to SML) ranges between 9 × 104–7 × 105. Regarding the single lipid groups on the aerosol particles, a weak relation between EFaer and lipophilicity (expressed by the KOW value) was identified, which was absent for the SML. However, overall simple physico-chemical descriptors are not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean-atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extend of enrichment of lipid classes constituents on the aerosol particles might be related to the distribution of the lipid within the bubble-air-water-interface. Lipids, which are preferably arranged within the bubble interface, namely TG and ALC, are transferred to the aerosol particles to the highest extend. Finally, the connection between ice nucleation particles (INP) in seawater, which are active already at higher temperatures (−10 °C to −15 °C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred to the atmosphere.


2013 ◽  
Vol 13 (23) ◽  
pp. 11791-11802 ◽  
Author(s):  
M. van Pinxteren ◽  
H. Herrmann

Abstract. An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol particles is presented. The method is based on derivatization with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD < 10%), sensitivity (detection limits in the low ng L−1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the Polarstern cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulk water (BW) with average concentrations of 228 ng L−1 (GLY) and 196 ng L−1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m−3) and MGLY (average concentration 0.15 ng m−3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosol particles could be a hint for interactions, in particular of GLY, between seawater and the atmosphere.


2020 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Khanneh Wadinga Fomba ◽  
Nadja Triesch ◽  
Heike Wex ◽  
Xianda Gong ◽  
...  

&lt;p&gt;The project MarParCloud (marine biological production, organic aerosol particles and marine clouds: a process chain) aims at achieving a better understanding of the biological production of organic matter (OM)in the oceans, its export into marine aerosol particles and finally its ability to act as ice and cloud condensation nuclei (INP and CCN). The core of MarParCloud comprised a field campaign at the Cape Verde Atmosphere Observatory (CVAO) in autumn 2017, where a variety of chemical, physical, biological and meteorological approaches were applied. The investigations included concerted measurements of the bulk water, the Sea Surface Microlayer (SML), ambient aerosol particles on the ground (30 m a.s.l.) and in mountain heights (744 m) as well as cloud water. Important aspects of the ocean atmosphere Interactions focusing on marine OM have been addressed through detailed observation and modeling approaches.&lt;/p&gt;&lt;p&gt;Key variables comprised the chemical characterization of the atmospherically relevant OM components (e.g. lipids, proteins, sugars) in the ocean and the atmosphere as well as measurements of INP and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analysed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modelling studies supported the experimental analysis.&lt;/p&gt;&lt;p&gt;Here we show the proof of concept of the connection between organic matter emission from the ocean to the atmosphere and up to the cloud level. A link between the ocean and the atmosphere was clearly observed as (i) the particles measured at the surface are well mixed within the marine boundary layer up to cloud level and (ii) ocean-derived compounds can be found in the aerosol particles at mountain height and in the cloud water. The organic measurements will be implemented in a new source function for the oceanic emission of OM. However, from a perspective of particle number concentrations, the marine contributions to both CCN and INP are rather limited.&lt;/p&gt;


2021 ◽  
Vol 21 (18) ◽  
pp. 13903-13930
Author(s):  
Robert Wagner ◽  
Luisa Ickes ◽  
Allan K. Bertram ◽  
Nora Els ◽  
Elena Gorokhova ◽  
...  

Abstract. Sea spray aerosol particles are a recognised type of ice-nucleating particles under mixed-phase cloud conditions. Entities that are responsible for the heterogeneous ice nucleation ability include intact or fragmented cells of marine microorganisms as well as organic matter released by cell exudation. Only a small fraction of sea spray aerosol is transported to the upper troposphere, but there are indications from mass-spectrometric analyses of the residuals of sublimated cirrus particles that sea salt could also contribute to heterogeneous ice nucleation under cirrus conditions. Experimental studies on the heterogeneous ice nucleation ability of sea spray aerosol particles and their proxies at temperatures below 235 K are still scarce. In our article, we summarise previous measurements and present a new set of ice nucleation experiments at cirrus temperatures with particles generated from sea surface microlayer and surface seawater samples collected in three different regions of the Arctic and from a laboratory-grown diatom culture (Skeletonema marinoi). The particles were suspended in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber and ice formation was induced by expansion cooling. We confirmed that under cirrus conditions, apart from the ice-nucleating entities mentioned above, also crystalline inorganic salt constituents can contribute to heterogeneous ice formation. This takes place at temperatures below 220 K, where we observed in all experiments a strong immersion freezing mode due to the only partially deliquesced inorganic salts. The inferred ice nucleation active surface site densities for this nucleation mode reached a maximum of about 5×1010 m−2 at an ice saturation ratio of 1.3. Much smaller densities in the range of 108–109 m−2 were observed at temperatures between 220 and 235 K, where the inorganic salts fully deliquesced and only the organic matter and/or algal cells and cell debris could contribute to heterogeneous ice formation. These values are 2 orders of magnitude smaller than those previously reported for particles generated from microlayer suspensions collected in temperate and subtropical zones. While this difference might simply underline the strong variability of the number of ice-nucleating entities in the sea surface microlayer across different geographical regions, we also discuss how instrumental parameters like the aerosolisation method and the ice nucleation measurement technique might affect the comparability of the results amongst different studies.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Stefan Barthel ◽  
Khanneh Wadinga Fomba ◽  
Konrad Müller ◽  
Wolf von Tümpling ◽  
...  

The export of organic matter from ocean to atmosphere represents a substantial carbon flux in the Earth system, yet the impact of environmental drivers on this transfer is not fully understood. This work presents dissolved and particulate organic carbon (DOC, POC) concentrations, their enrichment factors in the sea surface microlayer (SML), and equivalent measurements in marine aerosol particles across the Atlantic Ocean. DOC concentrations averaged 161 ± 139 µmol L–1 (n = 78) in bulk seawater and 225 ± 175 µmol L–1 (n = 79) in the SML; POC concentrations averaged 13 ± 11 µmol L–1 (n = 80) and 17 ± 10 µmol L–1 (n = 80), respectively. High DOC and POC enrichment factors were observed when samples had low concentrations, and lower enrichments when concentrations were high. The impacts of wind speed and chlorophyll-a levels on concentrations and enrichment of DOC and POC in seawater were insignificant. In ambient submicron marine aerosol particles the concentration of water-soluble organic carbon was approximately 0.2 µg m–3. Water-insoluble organic carbon concentrations varied between 0.01 and 0.9 µg m–3, with highest concentrations observed when chlorophyll-a concentrations were high. Concerted measurements of bulk seawater, the SML and aerosol particles enabled calculation of enrichment factors of organic carbon in submicron marine ambient aerosols, which ranged from 103 to 104 during periods of low chlorophyll-a concentrations and up to 105 when chlorophyll-a levels were high. The results suggest that elevated local biological activity enhances the enrichment of marine-sourced organic carbon on aerosol particles. However, implementation of the results in source functions based on wind speed and chlorophyll-a concentrations underestimated the organic fraction at low biological activity by about 30%. There may be additional atmospheric and oceanic parameters to consider for accurately predicting organic fractions on aerosol particles.


2013 ◽  
Vol 13 (6) ◽  
pp. 15301-15331 ◽  
Author(s):  
M. van Pinxteren ◽  
H. Herrmann

Abstract. An analytical method for the determination of the alpha dicarbonyls glyoxal (GLY) and methylglyoxal (MGLY) from seawater and marine aerosol samples is presented. The method is based on derivatisation with o-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine (PFBHA) reagent, solvent extraction and GC-MS (SIM) analysis. The method showed good precision (RSD <10%), sensitivity (detection limits in the low ng L−1 range), and accuracy (good agreement between external calibration and standard addition). The method was applied to determine GLY and MGLY in oceanic water sampled during the POLARSTERN cruise ANT XXVII/4 from Capetown to Bremerhaven in spring 2011. GLY and MGLY were determined in the sea surface microlayer (SML) of the ocean and corresponding bulkwater (BW) with average concentrations of 228 ng L−1 (GLY) and 196 ng L−1 (MGLY). The results show a significant enrichment (factor of 4) of GLY and MGLY in the SML. Furthermore, marine aerosol particles (PM1) were sampled during the cruise and analyzed for GLY (average concentration 0.19 ng m−3) and MGLY (average concentration 0.15 ng m−3). On aerosol particles, both carbonyls show a very good correlation with oxalate, supporting the idea of a secondary formation of oxalic acid via GLY and MGLY. Concentrations of GLY and MGLY in seawater and on aerosol particles were correlated to environmental parameters such as global radiation, temperature, distance to the coastline and biological activity. There are slight hints for a photochemical production of GLY and MGLY in the SML (significant enrichment in the SML, higher enrichment at higher temperature). However, a clear connection of GLY and MGLY to global radiation as well as to biological activity cannot be concluded from the data. A slight correlation between GLY and MGLY in the SML and in aerosols could be a hint for interactions of especially GLY between seawater and the atmosphere.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Vassilia J. Sinanoglou ◽  
Irini F. Strati ◽  
Sotirios M. Bratakos ◽  
Charalampos Proestos ◽  
Panagiotis Zoumpoulakis ◽  
...  

An efficient separation and quantification of the individual neutral and polar lipid classes and their constituent fatty acids was achieved by the combination of two different detection techniques: Iatroscan TLC-FID and GC-FID. The solvent composition and ratio of development system, the sample size, the fidelity, and precision were tested in order to estimate the effectiveness of separation of individual neutral and polar lipid classes and the quantitative reproducibility of the Iatroscan TLC-FID technique. GC-FID method, with a high-quality capillary column, allowed sensitive and reproducible fatty acid qualitative and quantitative analyses, separation of fatty acid structural isomers (e.g., n-C16:0, iso-C16:0 and anteiso-C16:0), positional isomers (e.g., C18:1ω-9 and C18:1ω-7), geometrical isomers (cis-trans), and homologues (e.g., C16:0, C17:0, C18:0, etc.) in standards and complex lipid samples. Seventeen (17) lipid classes and fifty-two (52) saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids were identified and quantified, respectively, in samples of standard lipid and fatty acid mixtures, simulating the composition of natural lipids and their fatty acid methyl esters in common foods. The wide number of applications establishes this combination of Iatroscan TLC-FID and GC-FID methods as a powerful tool for lipid class and fatty acid analysis of any fat origin.


2021 ◽  
Author(s):  
Robert Wagner ◽  
Luisa Ickes ◽  
Allan K. Bertram ◽  
Nora Els ◽  
Elena Gorokhova ◽  
...  

Abstract. Sea spray aerosol particles are a recognised type of ice-nucleating particles under mixed-phase cloud conditions. Entities that are responsible for the heterogeneous ice nucleation ability include intact or fragmented cells of marine microorganisms as well as organic matter released by cell exudation. Only a small fraction of sea salt aerosol is transported to the upper troposphere, but there are indications from mass-spectrometric analyses of the residuals of sublimated cirrus particles that sea salt could also contribute to heterogeneous ice nucleation under cirrus conditions. Experimental studies on the heterogeneous ice nucleation ability of sea spray aerosol particles and their proxies at temperatures below 235 K are still scarce. In our article, we summarise previous measurements and present a new set of ice nucleation experiments at cirrus temperatures with particles generated from sea surface microlayer and surface seawater samples collected in three different regions of the Arctic and from a laboratory-grown diatom culture (Skeletonema marinoi). The particles were suspended in a large cloud chamber and ice formation was induced by expansion cooling. We confirmed that under cirrus conditions, apart from the ice-nucleating entities mentioned above, also crystalline inorganic salt constituents can contribute to heterogeneous ice formation. This takes place at temperatures below 220 K, where we observed in all experiments a strong immersion freezing mode due to the only partially deliquesced inorganic salts. The inferred ice nucleation active surface site densities for this nucleation mode reached a maximum of about 5·1010 m−2 at an ice saturation ratio of 1.3. Much smaller densities in the range of 108–109 m−2 were observed at temperatures between 220 and 235 K, where the inorganic salts fully deliquesced and only the organic matter and/or algal cells and cell debris could contribute to heterogeneous ice formation. These values are two orders of magnitude smaller than those previously reported for particles generated from microlayer suspensions collected in temperate and subtropical zones. While this difference might simply underline the strong variability of the amount of ice-nucleating entities in the sea surface microlayer across different geographical regions, we also discuss how far instrumental parameters like the aerosolisation method and the ice-nucleation measurement technique might affect the comparability of the results amongst different studies.


Author(s):  
Andri Setyorini ◽  
Niken Setyaningrum

Background: Elderly is the final stage of the human life cycle, that is part of the inevitable life process and will be experienced by every individual. At this stage the individual undergoes many changes both physically and mentally, especially setbacks in various functions and abilities he once had. Preliminary study in Social House Tresna Wreda Yogyakarta Budhi Luhur Units there are 16 elderly who experience physical immobilization. In the social house has done various activities for the elderly are still active, but the elderly who experienced muscle weakness is not able to follow the exercise, so it needs to do ROM (Range Of Motion) exercise.   Objective: The general purpose of this research is to know the effect of Range Of Motion (ROM) Active Assitif training to increase the range of motion of joints in elderly who experience physical immobility at Social House of Tresna Werdha Yogyakarta unit Budhi Luhur.   Methode: This study was included in the type of pre-experiment, using the One Group Pretest Posttest design in which the range of motion of the joints before (pretest) and posttest (ROM) was performed  ROM. Subjects in this study were all elderly with impaired physical mobility in Social House Tresna Wreda Yogyakarta Unit Budhi Luhur a number of 14 elderly people. Data analysis in this research use paired sample t-test statistic  Result: The result of this research shows that there is influence of ROM (Range of Motion) Active training to increase of range of motion of joints in elderly who experience physical immobility at Social House Tresna Wredha Yogyakarta Unit Budhi Luhur.  Conclusion: There is influence of ROM (Range of Motion) Active training to increase of range of motion of joints in elderly who experience physical immobility at Social House Tresna Wredha Yogyakarta Unit Budhi Luhur.


Sign in / Sign up

Export Citation Format

Share Document