scholarly journals A modeling analysis of a heavy air pollution episode occurred in Beijing

2007 ◽  
Vol 7 (12) ◽  
pp. 3103-3114 ◽  
Author(s):  
X. An ◽  
T. Zhu ◽  
Z. Wang ◽  
C. Li ◽  
Y. Wang

Abstract. The concentrations of fine particulate matter (PM) and ozone in Beijing often exceed healthful levels in recent years, therefore China is to taking steps to improve Beijing's air quality for the 2008 Olympic Games. In this paper, the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System was used to investigate a heavy air pollution episode in Beijing during 3–7 April 2005 to obtain the basic information of how heavy air pollution formed and the contributions of local sources and surround emissions. The modeling domain covered from East Asia with four nested grids with 81 to 3 km horizontal resolution focusing on urban Beijing. This was coupled with a regional emissions inventory with a 10 km resolution and a local 1 km Beijing emissions database. The trend of predicted concentrations of various pollutants agreed reasonably well with the observations and captured the main features of this heavy pollution episode. The simulated column concentration distribution of PM was correlated well with the MODIS remote sensing products. Control runs with and without Beijing emissions were conducted to quantify the contributions of non-Beijing sources (NBS) to the Beijing local air pollution. The contributions of NBS to each species differed spatially and temporally with the order of PM2.5>PM10>SO2> soil for this episode. The percentage contribution of NBS to fine particle (PM2.5) in Beijing was averaged about 39%, up to 53% at the northwest of urban Beijing and only 15% at southwest. The spatial distribution of NBS contributions for PM10 was similar to that for PM2.5, with a slightly less average percentage of about 30%. The average NBS contributions for SO2 and soil (diameter between 2.5 μm and 10 μm) were 18% and 10%. In addition, the pollutant transport flux was calculated and compared at different levels to investigate transport pathway and magnitude. It was found that the NBS contribution correlated with the transport flux, contributing 60% of PM10 concentration in Beijing at the time of transport flux peak during a strong episode with a transport path from southwest to northeast.

2006 ◽  
Vol 6 (4) ◽  
pp. 8215-8240 ◽  
Author(s):  
X. An ◽  
T. Zhu ◽  
Z. Wang ◽  
C. Li ◽  
Y. Wang

Abstract. Because concentrations of fine particulate matter (PM) and ozone in Beijing often exceed healthful levels, China is to taking steps to improve Beijing's air quality for the 2008 Olympic Games. In this paper the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System was used to investigate a heavy air pollution episode in Beijing during 3–7 April 2005. The modeling domain covered from East Asia with four nested grids with 81 to 3 km horizontal resolution focusing on urban Beijing. This was coupled with a regional emissions inventory with a 10 km resolution and a local 1km Beijing emissions database. The trend of predicted concentrations of various pollutants agreed reasonably well with the observations and captured the main features of this heavy pollution episode. The simulated column concentration distribution of PM was correlated reasonably with the MODIS remote sensing products. Control runs with and without Beijing emissions were conducted to quantify the contributions of non-Beijing sources (NBS) to the Beijing local air pollution. The contributions of NBS to each species differed spatially and temporally with the order of PM25>PM10>SO2>SOIL for this episode. The percentage contribution of NBS to fine particle (PM2.5) in Beijing was averaged about 40%, up to 80% at the northwest of urban Beijing and only 10–20% at southwest. The spatial distribution of NBS contributions for PM10 was similar to that for PM2.5, with a slightly less average percentage of about 30%. The NBS contributions for SO2 and SOIL (diameter between 2.5 μm and 10 μm) were only 10–20% and 5–10%. In addition, the pollutant transport flux was calculated and compared at different levels to investigate transport pathway and magnitude. It was found that the NBS contribution correlated with the transport flux, contributing 70% of PM10 concentration in Beijing at the time of transport flux peak during a strong episode with a transport path from southwest to northeast.


Author(s):  
Sungbo Shim ◽  
Hyunmin Sung ◽  
Sanghoon Kwon ◽  
Jisun Kim ◽  
Jaehee Lee ◽  
...  

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


2020 ◽  
Vol 20 (5) ◽  
pp. 2755-2780 ◽  
Author(s):  
Michael Biggart ◽  
Jenny Stocker ◽  
Ruth M. Doherty ◽  
Oliver Wild ◽  
Michael Hollaway ◽  
...  

Abstract. We examine the street-scale variation of NOx, NO2, O3 and PM2.5 concentrations in Beijing during the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) winter measurement campaign in November–December 2016. Simulations are performed using the urban air pollution dispersion and chemistry model ADMS-Urban and an explicit network of road source emissions. Two versions of the gridded Multi-resolution Emission Inventory for China (MEIC v1.3) are used: the standard MEIC v1.3 emissions and an optimised version, both at 3 km resolution. We construct a new traffic emissions inventory by apportioning the transport sector onto a detailed spatial road map. Agreement between mean simulated and measured pollutant concentrations from Beijing's air quality monitoring network and the Institute of Atmospheric Physics (IAP) field site is improved when using the optimised emissions inventory. The inclusion of fast NOx–O3 chemistry and explicit traffic emissions enables the sharp concentration gradients adjacent to major roads to be resolved with the model. However, NO2 concentrations are overestimated close to roads, likely due to the assumption of uniform traffic activity across the study domain. Differences between measured and simulated diurnal NO2 cycles suggest that an additional evening NOx emission source, likely related to heavy-duty diesel trucks, is not fully accounted for in the emissions inventory. Overestimates in simulated early evening NO2 are reduced by delaying the formation of stable boundary layer conditions in the model to replicate Beijing's urban heat island. The simulated campaign period mean PM2.5 concentration range across the monitoring network (∼15 µg m−3) is much lower than the measured range (∼40 µg m−3). This is likely a consequence of insufficient PM2.5 emissions and spatial variability, neglect of explicit point sources, and assumption of a homogeneous background PM2.5 level. Sensitivity studies highlight that the use of explicit road source emissions, modified diurnal emission profiles, and inclusion of urban heat island effects permit closer agreement between simulated and measured NO2 concentrations. This work lays the foundations for future studies of human exposure to ambient air pollution across complex urban areas, with the APHH-China campaign measurements providing a valuable means of evaluating the impact of key processes on street-scale air quality.


2015 ◽  
Vol 15 (16) ◽  
pp. 9577-9591 ◽  
Author(s):  
M. Beekmann ◽  
A. S. H. Prévôt ◽  
F. Drewnick ◽  
J. Sciare ◽  
S. N. Pandis ◽  
...  

Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 227 ◽  
Author(s):  
Daiju Narita ◽  
Nguyen Oanh ◽  
Keiichi Sato ◽  
Mingqun Huo ◽  
Didin Permadi ◽  
...  

Air pollution is becoming a prominent social problem in fast-growing Asian economies. Taking the Bangkok Metropolitan Region (BMR) as a case, we conducted an observational study of fine particulate matter (PM2.5) and acid deposition, consisting of their continuous monitoring at two sites. To find the major contributing sources of PM2.5, the PM composition data were analyzed by a receptor modeling approach while the pollution load from BMR sources to the air was characterized by an emission inventory. Our data show generally alarming levels of PM2.5 in the region, of which transportation and biomass burning are two major sources. In this paper, we present a general overview of our observational findings, contrast the scientific information with the policy context of air quality management in BMR, and discuss policy implications. In BMR, where a set of conventional regulatory instruments on air quality management are already in place, a solution for the air pollution problem should lie in a combination of air quality regulation and other policies, such as energy and agricultural policies.


2008 ◽  
Vol 2 (1) ◽  
pp. 21-26 ◽  
Author(s):  
C. Milford ◽  
C. Marrero ◽  
C. Martin ◽  
J. J. Bustos ◽  
X. Querol

Abstract. In the frame of the WMO Global Atmosphere Watch Urban Research Meteorology and Environment programme (GURME), a system for forecasting air pollution episode potential in the Canary Islands has been developed. Meteorological parameters relevant to air quality (synoptic wind speed, wind direction, boundary layer height and temperature at 91 vertical levels) are obtained from the European Centre for Medium range Weather Forecasting (ECMWF) once a day for up to four days ahead. In addition, a model based on the analogue method utilising six years of historical meteorological and air quality data predicts the probability of SO2 concentration exceeding certain thresholds for a measurement station located in Santa Cruz de Tenerife. Meteorological forecasts are also provided from a high resolution (2 km) local area model (MM5) implemented for the Canary Islands domain. This simple system is able to forecast meteorological conditions which are favourable to the occurrence of pollution episodes for the forthcoming days.


2015 ◽  
Vol 15 (6) ◽  
pp. 8647-8686 ◽  
Author(s):  
M. Beekmann ◽  
A. S. H. Prévôt ◽  
F. Drewnick ◽  
J. Sciare ◽  
S. N. Pandis ◽  
...  

Abstract. A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns and from additional one year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in-situ measurements during short intensive and longer term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only controlling part of its own average and peak PM levels has important implications for air pollution regulation policies.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 138-138
Author(s):  
Nelson Roque ◽  
Charles Hall ◽  
Mindy Katz ◽  
Martin Sliwinski

Abstract Prior research has established that those exposed to higher levels of fine particulate matter (PM1, PM2.5) air pollution have higher levels of accumulated amyloid-beta (Aβ) and tau in frontal cortex at autopsy, higher error rates on cognitive function assessments, and lower scores on memory and both verbal and non-verbal intelligence assessments. We explored the relationship between regional air quality monitoring measures (EPA AirData) and baseline cognitive performance of 312 older adults, from the Einstein Aging Study (EAS, NIA P01AG003949). Participants completed neuropsychological assessments at baseline and each followup wave (i.e., delayed free recall and total recall; Trails A & B, Digit Symbol substitution task (DSST), MoCA). For each participant, based on their zipcode, we computed average PM2.5 exposure at various exposure windows (1-15, 30-60, 60-90, 90-120 days prior to baseline). Adjusting for age, education, and gender across all models, mean of daily particulate matter exposure at various exposure windows (30-60, 60-90 days) was significantly related to performance on the MoCA and Trails A & B, in expected directions (i.e., higher pollution, worse cognitive performance - more error, slower speed). Models with memory performance as the outcome indicated that only distant time horizons were related to memory performance (i.e., 60-90, 90-120 days prior). These findings suggest that particulate matter air pollution likely affects different cognitive domains at different timescales. This methodology cannot address contributions from indoor air quality and mobility - an exposure misclassification likely resulting in significant biases towards the null in the estimation of the effects of air pollution.


2013 ◽  
Vol 13 (11) ◽  
pp. 5813-5830 ◽  
Author(s):  
A. J. Ding ◽  
C. B. Fu ◽  
X. Q. Yang ◽  
J. N. Sun ◽  
L. F. Zheng ◽  
...  

Abstract. This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. Case studies for typical O3 and PM2.5 episodes demonstrated that these episodes were generally associated with an air mass transport pathway over the mid-YRD, i.e., along the Nanjing–Shanghai axis with its city clusters, and showed that synoptic weather played an important role in air pollution, especially for O3. Agricultural burning activities caused high PM2.5 and O3 pollution during harvest seasons, especially in June. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5 pollution in this region. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions.


Sign in / Sign up

Export Citation Format

Share Document