scholarly journals Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

2008 ◽  
Vol 8 (22) ◽  
pp. 6755-6773 ◽  
Author(s):  
W. Hua ◽  
Z. M. Chen ◽  
C. Y. Jie ◽  
Y. Kondo ◽  
A. Hofzumahaus ◽  
...  

Abstract. Atmospheric hydrogen peroxide (H2O2) and organic hydroperoxides were measured from 18 to 30 July in 2006 during the PRIDE-PRD'06 campaign at Backgarden, a rural site located 48 km north of Guangzhou, a mega-city in southern China. A ground-based instrument was used as a scrubbing coil collector to sample ambient air, followed by on-site analysis by high-performance liquid chromatography (HPLC) coupled with post-column derivatization and fluorescence detection. The H2O2 mixing ratio over the 13 days ranged from below the detection limit to a maximum of 4.6 ppbv, with a mean (and standard deviation) of (1.26±1.24) ppbv during the daytime (08:00–20:00 LT). Methyl hydroperoxide (MHP), with a maximum of 0.8 ppbv and a mean (and standard deviation) of (0.28±0.10) ppbv during the daytime, was the dominant organic hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide (BHMP), peroxyacetic acid (PAA), hydroxymethyl hydroperoxide (HMHP), 1-hydroxy-ethyl hydroperoxide (1-HEHP) and ethyl hydroperoxide (EHP), were detected occasionally. The concentration of H2O2 exhibited a pronounced diurnal variation on sunny days, with a peak mixing ratio in the afternoon (12:00–18:00 LT), but lacked an explicit diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H2O2 was observed during the evening, suggesting that H2O2 was produced by the ozonolysis of alkenes. The diurnal variation profile of MHP was, in general, consistent with that of H2O2. The estimation indicated that in the morning the H2O2 detected was formed mostly through local photochemical activity, with the rest probably attributable to vertical transport. It is notable that relatively high levels of H2O2 and MHP were found in polluted air. The unexpectedly high level of HO2 radicals detected in this region can account for the production of hydroperoxides, while the moderate level of NOx suppressed the formation of hydroperoxides. High concentrations of hydroperoxides were detected in samples of rainwater collected in a heavy shower on 25 July when a typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides, particularly MHP, resided above the boundary layer, which might be transported on a regional scale and further influence the redistribution of HOx and ROx radicals. It was found that hydroperoxides, in particular H2O2, play an important role in the formation of secondary sulfate in the aerosol phase, where the heterogeneous reaction might contribute substantially. A negative correlation between hydroperoxides and water-soluble organic compounds (WSOC), a considerable fraction of the secondary organic aerosol (SOA), was observed, possibly providing field evidence for the importance of hydroperoxides in the formation of SOA found in previous laboratory studies. We suggest that hydroperoxides act as an important link between sulfate and organic aerosols, which needs further study and should be considered in current atmospheric models.

2008 ◽  
Vol 8 (3) ◽  
pp. 10481-10530 ◽  
Author(s):  
W. Hua ◽  
Z. M. Chen ◽  
C. Y. Jie ◽  
Y. Kondo ◽  
A. Hofzumahaus ◽  
...  

Abstract. Atmospheric hydrogen peroxide (H2O2) and organic hydroperoxides were measured from 18 to 30 July in 2006 during the PRIDE-PRD'06 campaign at Backgarden, a rural site located 48 km north of Guangzhou, a mega-city in southern China. A ground-based instrument was used as a scrubbing coil collector to sample ambient air, followed by on-site analysis by high-performance liquid chromatography (HPLC) coupled with post-column derivatization and fluorescence detection. The H2O2 mixing ratio over the 13 days ranged from below the detection limit to a maximum of 4.6 ppbv, with a mean (and standard deviation) of (1.26±1.24) ppbv during the daytime (08:00–20:00 LT). Methyl hydroperoxide (MHP), with a maximum of 0.8 ppbv and a mean (and standard deviation) of (0.28±0.10) ppbv during the daytime, was the dominant organic hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide (BHMP), peroxyacetic acid (PAA), hydroxymethyl hydroperoxide (HMHP), 1-hydroxy-ethyl hydroperoxide (1-HEHP) and ethyl hydroperoxide (EHP), were detected occasionally. The concentration of H2O2 exhibited a pronounced diurnal variation on sunny days, with a peak mixing ratio in the afternoon (12:00–18:00 LT), but lacked an explicit diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H2O2 was observed during the evening, suggesting that H2O2 was produced by the ozonolysis of alkenes. The diurnal variation profile of MHP was, in general, consistent with that of H2O2. The estimation indicated that in the morning the H2O2 detected was formed mostly through local photochemical activity, with the rest probably attributable to vertical transport. It is notable that relatively high levels of H2O2 and MHP were found in polluted air. The unexpectedly high level of HO2 radicals detected in this region can account for the production of hydroperoxides, while the high level of NOx suppressed the formation of hydroperoxides significantly. High concentrations of hydroperoxides were detected in samples of rainwater collected in a heavy shower on 25 July when a typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides, particularly MHP, resided above the upper boundary layer, which might be transported on a regional scale and further influence the redistribution of HOx and ROx radicals. It was found that hydroperoxides, in particular H2O2, play an important role in the formation of secondary sulfate in the aerosol phase, where the heterogeneous reaction might contribute substantially. A negative correlation between hydroperoxides and water-soluble organic compounds (WSOC), a considerable fraction of the secondary organic aerosol (SOA), was observed, providing field evidence for the importance of hydroperoxides in the formation of SOA found in previous laboratory studies. We suggest that hydroperoxides act as an important link between sulfate and organic aerosols, which needs further study and should be considered in current atmospheric models.


2021 ◽  
Vol Special Issue (1) ◽  
pp. 53-67
Author(s):  
Manisha Mishra ◽  
Umesh C Kulshrestha

The present study reports spatio-temporal distribution pattern of major gaseous (NH3 and NO2) and particulate water soluble total nitrogen (pWSTN) in the ambient air to explore the seasonal variation, major interactions and dominating sources. Considering the major hotspot of atmospheric reactive nitrogen (N) emission, three sites in Indo-Gangetic plain (IGP) were selected based on different local source parameters. Results have shown that gas phase reactive N contribute up to 90% of total analyzed reactive N, where NH3 imparted highest at all the three sites. Prayagraj, a fast growing urban site, has shown highest concentrations of NH3 (72.0 μg m−3), followed by Madhupur rural site (57.7 μg m−3) and Delhi, an urban megacity site (35.8 μg m−3). As compared to previous studies conducted at different sites of IGP, NH3 concentrations were reported to be the highest at the former two sites. However, unlike NH3, NO2 levels were recorded lower at Madhupur (3.1 μg m−3) and Prayagraj (9.4 μg m−3) sites as compared to Delhi (13.4 μg m−3). Similarly, pWSTN concentrations were in the order of Madhupur (6.6 μg m−3) < Prayagraj (10.0 μg m−3) < Delhi (10.1 μg m−3). A strong correlation of NO2 with pWSTN at urban sites has shown the crucial role of NO2 in the formation of nitrogenous aerosols. Significant spatial variation can be attributed to varying local emission sources ranging from microbial emission from improper sewage treatment and open waste dumping at Prayagraj, agricultural activities at Madhupur and vehicular exhausts at Delhi site.


2018 ◽  
Vol 18 (17) ◽  
pp. 13013-13030 ◽  
Author(s):  
Michael Le Breton ◽  
Åsa M. Hallquist ◽  
Ravi Kant Pathak ◽  
David Simpson ◽  
Yujue Wang ◽  
...  

Abstract. Nitryl chloride (ClNO2) accumulation at night acts as a significant reservoir for active chlorine and impacts the following day's photochemistry when the chlorine atom is liberated at sunrise. Here, we report simultaneous measurements of N2O5 and a suite of inorganic halogens including ClNO2 and reactions of chloride with volatile organic compounds (Cl–VOCs) in the gas and particle phases utilising the Filter Inlet for Gas and AEROsols time-of-flight chemical ionisation mass spectrometer (FIGAERO-ToF-CIMS) during an intensive measurement campaign 40 km northwest of Beijing in May and June 2016. A maximum mixing ratio of 2900 ppt of ClNO2 was observed with a mean campaign nighttime mixing ratio of 487 ppt, appearing to have an anthropogenic source supported by correlation with SO2, CO and benzene, which often persisted at high levels after sunrise until midday. This was attributed to such high mixing ratios persisting after numerous e-folding times of the photolytic lifetime enabling the chlorine atom production to reach 2.3  ×  105 molecules cm−3 from ClNO2 alone, peaking at 09:30 LT and up to 8.4  ×  105 molecules cm−3 when including the supporting inorganic halogen measurements.Cl–VOCs were observed in the particle and gas phases for the first time at high time resolution and illustrate how the iodide ToF-CIMS can detect unique markers of chlorine atom chemistry in ambient air from both biogenic and anthropogenic sources. Their presence and abundance can be explained via time series of their measured and steady-state calculated precursors, enabling the assessment of competing OH and chlorine atom oxidation via measurements of products from both of these mechanisms and their relative contribution to secondary organic aerosol (SOA) formation.


2011 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Norfaezah Mazalan ◽  
Mazatulikhma Mat Zain ◽  
Nor Saliyana Jumali ◽  
Norhanim Mohalid ◽  
Zurina Shaameri ◽  
...  

Recently, research and development in the field of drug delivery systems (DDS) facilitating site-specific therapy has reached significant progression. DDS based on polymer micelles, coated micro- and nanoparticles, and various prodrug systems including water-soluble polymer have been prepared and extensively studied as novel drugs designed for cancer chemotherapy and brain delivery. Since polymers are going to be used in human, this study has the interest of testing two types of polymer, polyimides (PI) and polyphenylenevinylene (PPV) on neuronal cells. The objective of this study was to determine the possible neurotoxicity and potential neuroprotective effects of PI and PPV towards SH-SY5Y neuronal cells challenged by hydrogen peroxide (H2O2) as an oxidant. Cells were pretreated with either PI or PPV for 1 hour followed by incubation for 24 hour with 100 µM of H2O2. MTS assay was used to assess cell viability. Results show that PI and PPV are not harmful within the concentration up to 10 µM and 100 µM, respectively. However, PI and PPV do not protect neuronal cells against toxicity induced by H2O2 or further up the cell death.


2019 ◽  
Vol 11 (17) ◽  
pp. 2016
Author(s):  
Lijuan Wang ◽  
Ni Guo ◽  
Wei Wang ◽  
Hongchao Zuo

FY-4A is a second generation of geostationary orbiting meteorological satellite, and the successful launch of FY-4A satellite provides a new opportunity to obtain diurnal variation of land surface temperature (LST). In this paper, different underlying surfaces-observed data were applied to evaluate the applicability of the local split-window algorithm for FY-4A, and the local split-window algorithm parameters were optimized by the artificial intelligent particle swarm optimization (PSO) algorithm to improve the accuracy of retrieved LST. Results show that the retrieved LST can efficiently reproduce the diurnal variation characteristics of LST. However, the estimated values deviate hugely from the observed values when the local split-window algorithms are directly used to process the FY-4A satellite data, and the root mean square errors (RMSEs) are approximately 6K. The accuracy of the retrieved LST cannot be effectively improved by merely modifying the emissivity-estimated model or optimizing the algorithm. Based on the measured emissivity, the RMSE of LST retrieved by the optimized local split-window algorithm is reduced to 3.45 K. The local split-window algorithm is a simple and easy retrieval approach that can quickly retrieve LST on a regional scale and promote the application of FY-4A satellite data in related fields.


1999 ◽  
Vol 69 (12) ◽  
pp. 956-960 ◽  
Author(s):  
J. Tokuda ◽  
R. Ohura ◽  
T. Iwasaki ◽  
Y. Takeuchi ◽  
A. Kashiwada ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Jeanette M. Cardamone ◽  
Alberto Nuñez ◽  
Rafael A. Garcia ◽  
Mila Aldema-Ramos

Keratin from wool is a reactive, biocompatible, and biodegradable material. As the biological structural component of skin (soft keratins) and of nails, claws, hair, horn, feathers, and scales (hard keratins) pure keratin comprises up to 90% by weight of wool. Wool was treated in alkaline solutions to extract from 68% to 82% keratin within 2 to 5 hours of exposure at . The keratin products were water-soluble and were confirmed to contain intermediate filament and microfibrillar component-proteins of fractured, residual cuticle, and cortical cells. Oxidation of wool by peroxycarboximidic acid in alkaline hydrogen peroxide produced keratin products with distinct microcrystalline structures: descaled fibers, fibrous matrices, and lyophilized powders. Morphology and confirmation of peptide functionality were documented by SEM, Amino Acid Analysis, SDS-PAGE gel electrophoresis, MALDI-TOF/TOF, and FTIR analyses. The reactivity of keratin from wool models the reactivity of keratin from low-value sources such as cattle hair.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 264 ◽  
Author(s):  
Giovanni Lonati ◽  
Federico Riva

The impact of the reduced atmospheric emissions due to the COVID-19 lockdown on ambient air quality in the Po Valley of Northern Italy was assessed for gaseous pollutants (NO2, benzene, ammonia) based on data collected at the monitoring stations distributed all over the area. Concentration data for each month of the first semester of 2020 were compared with those of the previous six years, on monthly, daily, and hourly bases, so that pre, during, and post-lockdown conditions of air quality could be separately analyzed. The results show that, as in many other areas worldwide, the Po Valley experienced better air quality during 2020 spring months for NO2 and benzene. In agreement with the reductions of nitrogen oxides and benzene emissions from road traffic, estimated to be −35% compared to the regional average, the monthly mean concentration levels for 2020 showed reductions in the −40% to −35% range compared with the previous years, but with higher reductions, close to −50%, at high-volume-traffic sites in urban areas. Conversely, NH3 ambient concentration levels, almost entirely due the emissions of the agricultural sector, did not show any relevant change, even at high-volume-traffic sites in urban areas. These results point out the important role of traffic emissions in NO2 and benzene ambient levels in the Po Valley, and confirm that this region is a rather homogeneous air basin with urban area hot-spots, the contributions of which add up to a relatively high regional background concentration level. Additionally, the relatively slow response of the air quality levels to the sudden decrease of the emissions due to the lockdown shows that this region is characterized by a weak exchange of the air masses that favors both the build-up of atmospheric pollutants and the development of secondary formation processes. Thus, air quality control strategies should aim for structural interventions intended to reduce traffic emissions at the regional scale and not only in the largest urban areas.


2018 ◽  
Vol 18 (23) ◽  
pp. 17177-17190 ◽  
Author(s):  
Peng Sun ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Yuning Xie ◽  
Xin Huang ◽  
...  

Abstract. Particulate nitrate contributes a large fraction of secondary aerosols. Despite understanding of its important role in regional air quality and global climate, long-term continuous measurements are rather limited in China. In this study, we conducted online measurement of PM2.5 (particulate matter with diameters less than 2.5 µm) nitrate for 2 years from March 2014 to February 2016 using the Monitor for AeRosols and Gases in ambient Air (MARGA) in the western Yangtze River Delta (YRD), eastern China, and investigate the main factors that influenced its temporal variations and formation pathways. Compared to other sites in China, an overall high concentration of particulate nitrate was observed, with a mean value of 15.8 µg m−3 (0.5 to 92.6 µg m−3). Nitrate on average accounted for 32 % of the total mass of water-soluble ions and the proportion increased with PM loading, indicating that nitrate is a major driver of haze pollution episodes in this region. Sufficient ammonia drove most nitrate into the particle phase in the form of ammonium nitrate. A typical seasonal cycle of nitrate was observed, with the concentrations in winter on average 2 times higher than those in summer mainly due to different meteorological conditions. In summer, the diurnal variation of particulate nitrate was determined by thermodynamic equilibrium, resulting in a much lower concentration during daytime despite a considerable photochemical production. Air masses from the polluted YRD and biomass burning region contributed to the high nitrate concentration during summer. In winter, particulate nitrate did not reveal an evident diurnal variation. Regional transport from northern China played an important role in enhancing nitrate concentration. A total of 18 nitrate episodes were selected to understand the processes that drive the formation of high concentration of nitrate. Rapid nitrate formation was observed during the pre-episode (the day before nitrate episode day) nights, and dominated the increase of total water-soluble ions. Calculated nitrate from N2O5 hydrolysis was highly correlated to and accounted for 80 % of the observed nitrate, suggesting that N2O5 hydrolysis was a major contributor to the nitrate episodes. Our results suggested that rapid formation of nitrate could be a main cause for extreme aerosol pollution events in the YRD during winter, and illustrated the urgent need to control NOx emission.


Sign in / Sign up

Export Citation Format

Share Document