Neurotoxicity and Neuroprotective Effects of Polyimides (PI) and Polyphenylenevinylene (PPV) against Hydrogen Peroxide (H2O2)

2011 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Norfaezah Mazalan ◽  
Mazatulikhma Mat Zain ◽  
Nor Saliyana Jumali ◽  
Norhanim Mohalid ◽  
Zurina Shaameri ◽  
...  

Recently, research and development in the field of drug delivery systems (DDS) facilitating site-specific therapy has reached significant progression. DDS based on polymer micelles, coated micro- and nanoparticles, and various prodrug systems including water-soluble polymer have been prepared and extensively studied as novel drugs designed for cancer chemotherapy and brain delivery. Since polymers are going to be used in human, this study has the interest of testing two types of polymer, polyimides (PI) and polyphenylenevinylene (PPV) on neuronal cells. The objective of this study was to determine the possible neurotoxicity and potential neuroprotective effects of PI and PPV towards SH-SY5Y neuronal cells challenged by hydrogen peroxide (H2O2) as an oxidant. Cells were pretreated with either PI or PPV for 1 hour followed by incubation for 24 hour with 100 µM of H2O2. MTS assay was used to assess cell viability. Results show that PI and PPV are not harmful within the concentration up to 10 µM and 100 µM, respectively. However, PI and PPV do not protect neuronal cells against toxicity induced by H2O2 or further up the cell death.

2021 ◽  
Vol 28 ◽  
Author(s):  
Jing Li ◽  
Qinhua Chen ◽  
Jin Wang ◽  
Xiaoyan Pan ◽  
Jie Zhang

: Hydrogel is a hydrophilic but water-soluble polymer system with a three-dimensional network structure. Hydrogel can absorb large amounts of water and maintain its shape and remain soft. The high-moisturizing properties, good biocompatibility and controlled biodegradability of hydrogels have allowed them to be widely used in wound dressing, tissue engineering, controlled drug delivery systems and other fields. This article reviews the most widely used antibacterial gel dressings for wound healing in recent years and focuses on the application of an environmentally responsive intelligent hydrogel delivery system. Finally, the development prospects and challenges of hydrogel wound dressings are forecasted.


2019 ◽  
Vol 20 (11) ◽  
pp. 2680 ◽  
Author(s):  
Xia Zhao ◽  
Jiankang Fang ◽  
Shuai Li ◽  
Uma Gaur ◽  
Xingan Xing ◽  
...  

Oxidative stress is believed to be one of the main causes of neurodegenerative diseases such as Alzheimer’s disease (AD). The pathogenesis of AD is still not elucidated clearly but oxidative stress is one of the key hypotheses. Here, we found that artemisinin, an anti-malarial Chinese medicine, possesses neuroprotective effects. However, the antioxidative effects of artemisinin remain to be explored. In this study, we found that artemisinin rescued SH-SY5Y and hippocampal neuronal cells from hydrogen peroxide (H2O2)-induced cell death at clinically relevant doses in a concentration-dependent manner. Further studies showed that artemisinin significantly restored the nuclear morphology, improved the abnormal changes in intracellular reactive oxygen species (ROS), reduced the mitochondrial membrane potential, and caspase-3 activation, thereby attenuating apoptosis. Artemisinin also stimulated the phosphorylation of the adenosine monophosphate -activated protein kinase (AMPK) pathway in SH-SY5Y cells in a time- and concentration-dependent manner. Inhibition of the AMPK pathway attenuated the protective effect of artemisinin. These data put together suggested that artemisinin has the potential to protect neuronal cells. Similar results were obtained in primary cultured hippocampal neurons. Cumulatively, these results indicated that artemisinin protected neuronal cells from oxidative damage, at least in part through the activation of AMPK. Our findings support the role of artemisinin as a potential therapeutic agent for neurodegenerative diseases.


Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: In this review nanoscale based drug delivery systems particularly in relevance to the antiglaucoma drugs have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery, is an ideal option to target tumours and drug can be released at areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood–retinal barrier, corneal epithelium and the blood–aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us in understand the existing queries and evidence gaps and will pave way for effective design of novel ocular drug delivery systems


2021 ◽  
Author(s):  
Aranee Pleng Teepakakorn ◽  
Makoto Ogawa

Water-induced self-healing materials were prepared by the hybridization of a water-soluble polymer, poly(vinyl alcohol), with a smectite clay by mixing in an aqueous media and subsequent casting. Without using chemical...


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 940
Author(s):  
Muganti Rajah Kumar ◽  
Swee Keong Yeap ◽  
Han Chung Lee ◽  
Nurul Elyani Mohamad ◽  
Muhammad Nazirul Mubin Aziz ◽  
...  

Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma cells. Here, the antioxidant potentials of the six different kefir water samples were analysed by total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) assays, whereas the anti-apoptotic activity on hydrogen peroxide (H2O2) induced SH-SY5Y cells was examined using MTT, AO/PI double staining, and PI/Annexin V-FITC assays. The surface and internal morphological features of SH-SY5Y cells were studied using scanning and transmission electron microscopy. The results indicate that Kefir B showed the higher TPC (1.96 ± 0.54 µg GAE/µL), TFC (1.09 ± 0.02 µg CAT eq/µL), FRAP (19.68 ± 0.11 mM FRAP eq/50 µL), and DPPH (0.45 ± 0.06 mg/mL) activities compared to the other kefir samples. The MTT and PI/Annexin V-FITC assays showed that Kefir B pre-treatment at 10 mg/mL for 48 h resulted in greater cytoprotection (97.04%), and a significantly lower percentage of necrotic cells (7.79%), respectively. The Kefir B pre-treatment also resulted in greater protection to cytoplasmic and cytoskeleton inclusion, along with the conservation of the surface morphological features and the overall integrity of SH-SY5Y cells. Our findings indicate that the anti-oxidative, anti-apoptosis, and neuroprotective effects of kefir were mediated via the upregulation of SOD and catalase, as well as the modulation of apoptotic genes (Tp73, Bax, and Bcl-2).


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


Sign in / Sign up

Export Citation Format

Share Document