scholarly journals Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites

2008 ◽  
Vol 8 (23) ◽  
pp. 7133-7151 ◽  
Author(s):  
L. Zhang ◽  
R. Vet ◽  
A. Wiebe ◽  
C. Mihele ◽  
B. Sukloff ◽  
...  

Abstract. Size-segregated water-soluble inorganic ions, including particulate sulphate (SO42-), nitrate (NO3-), ammonium (NH4+), chloride (Cl-), and base cations (K+, Na+, Mg2+, Ca2+), were measured using a Micro-Orifice Uniform Deposit Impactor (MOUDI) during fourteen short-term field campaigns at eight locations in both polluted and remote regions of eastern and central Canada. The size distributions of SO42- and NH4+ were unimodal, peaking at 0.3–0.6 µm in diameter, during most of the campaigns, although a bimodal distribution was found during one campaign and a trimodal distribution was found during another campaign made at a coastal site. SO42- peaked at slightly larger sizes in the cold seasons (0.5–0.6 µm) compared to the hot seasons (0.3–0.4 µm) due to the higher relative humidity in the cold seasons. The size distributions of NO3- were unimodal, peaking at 4.0–7.0 µm during the warm-season campaigns, and bimodal, with one peak at 0.3–0.6 µm and another at 4–7 µm during the cold-season campaigns. A unimodal size distribution, peaking at 4–6 µm, was found for Cl-, Na+, Mg2+, and Ca2+ during approximately half of the campaigns and a bimodal distribution, with one peak at 2 µm and the other at 6 µm, was found during the rest of the campaigns. For K+, a bimodal distribution, with one peak at 0.3 µm and the other at 4 µm, was observed during most of the campaigns. Seasonal contrasts in the size-distribution profiles suggest that emission sources and air mass origins were the major factors controlling the size distributions of the primary aerosols while meteorological conditions were more important for the secondary aerosols. The dependence of the particle acidity on the particle size from the nucleation mode to the accumulation mode was not consistent from site to site or from season to season. Particles in the accumulation mode were more acidic than those in the nucleation mode when submicron particles were in the state of strong acidity; however, when submicron particles were neutral or weakly acidic, particles in the nucleation mode could sometimes be more acidic. The inconsistency of the dependence of the particle acidity on the particle size should have been caused by the different emission sources of all the related species and the different meteorological conditions during the different campaigns. The results presented here at least partially explain the controversial phenomenon found in previous studies on this topic.

2008 ◽  
Vol 8 (4) ◽  
pp. 13801-13845 ◽  
Author(s):  
L. Zhang ◽  
R. Vet ◽  
A. Wiebe ◽  
C. Mihele ◽  
B. Sukloff ◽  
...  

Abstract. Size-segregated water-soluble inorganic ions, including particulate sulphate (SO42-), nitrate (NO3-), ammonium (NH4+), chloride (Cl-) and base cations (K+, Na+, Mg2+, Ca2+), were measured using a Micro-Orifice Uniform Deposit Impactor (MOUDI) during fourteen short-term field campaigns at eight locations in both polluted and remote regions of eastern and central Canada. The size distributions of SO42- and NH4+ were unimodal, peaking at 0.3–0.6 μm in diameter, during most of the campaigns, although a bimodal distribution was found during one campaign and a trimodal distribution during another campaign made at a coastal site. The size distributions of NO3- were unimodal, peaking at 4.0–7.0 μm, during the warm-season campaigns and bimodal, with one peak at 0.3–0.6 μm and another at 4–7 μm, during the cold-season campaigns. A unimodal size distribution, peaking at 4–6 μm, was found for Cl-, Na+, Mg2+ and Ca2+ during approximately half of the campaigns and a bimodal distribution, with one peak at 2 μm and the other at 6 μm, was found during the rest of the campaigns. For K+, a bimodal distribution, with one peak at 0.3 μm and the other at 4 μm, was observed during most of the campaigns. The measured ion concentrations varied by one order of magnitude across the various sites. The air-mass origins and meteorological conditions both played important roles in formulating the observed geographical and seasonal patterns of these ion species concentration levels, size distributions and fine particle acidity.


2012 ◽  
Vol 12 (2) ◽  
pp. 5519-5550
Author(s):  
X. H. Yao ◽  
L. Zhang

Abstract. Among the 192 samples of size-segregated water-soluble inorganic ions collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) at eight rural locations in Canada, ten samples were identified to have gone through fog processing. The supermicron particle modes of ammonium salt aerosols were found to be the fingerprint of fog processed aerosols. However, the patterns and the sizes of the supermicron modes varied with ambient temperature (T) and particle acidity and also differed between inland and coastal locations. Under T > 0 °C condition, fog-processed ammonium salt aerosols were completely neutralized and had a dominant mode at 1–2 μm and a minor mode at 5–10 μm if particles were in neutral condition, and ammonium sulfate was incompletely neutralized and only had a 1–2 μm mode if particles were in acidic conditions. Under T < 0 °C at the coastal site, fog-processed aerosols exhibited a bi-modal size distribution with a dominant mode of incompletely-neutralized ammonium sulfate at about 3 μm and a minor mode of completely-neutralized ammonium sulfate at 8–9 μm. Under T < 0 °C condition at the inland sites, fog-processed ammonium salt aerosols were sometimes completely neutralized and sometimes incompletely neutralized, and the size of the supermicron mode was in the range from 1 to 5 μm. Overall, fog-processed ammonium salt aerosols under T < 0 °C condition were generally distributed at larger size (e.g., 2–5 μm) than those under T > 0 °C condition (e.g., 1–2 μm).


Author(s):  
Lu Yang ◽  
Quanyu Zhou ◽  
Hao Zhang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
...  

Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this study, the non-volcanic eruption period was taken as the target and daily PM2.5 samples were collected from 24 November to 21 December 2016. The daily concentrations in PM2.5 of ƩPAHs, ƩNPAHs, and ƩWSIIs ranged from 0.36 to 2.90 ng/m3, 2.12 to 22.3 pg/m3, and 1.96 to 11.4 μg/m3, respectively. Through the results of the diagnostic ratio analyses of the PAHs, NPAHs, and WSIIs and the backward trajectory analysis of the air masses arriving in Kirishima, the emission sources of PAHs, NPAHs, and WSIIs in PM2.5 in Kirishima were influenced by the coal burning that came from the East Asian continent, although there was no influence from volcanic emission sources during the sampling period. The total benzo[a]pyrene (BaP)-equivalent concentration was lower than many other cities but the health risks in Kirishima were nonetheless notable. These findings are very important for future research on PM samples during the inactive Asian monsoon and volcanic eruption periods, to further understand the characteristics of air pollutants in Kirishima, and to contribute to the improvement in health of residents and a reduction in the atmospheric circulation of air pollutants in East Asia.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoye Wu ◽  
Duanyang Liu ◽  
Tianliang Zhao ◽  
Yan Su ◽  
Bin Zhou

In order to investigate the chemical composition distributions and pollution characteristics of Total water-soluble inorganic ions (TWSII) in the rain period (Meiyu) in the East Asian summer monsoon season, including the impact of Meiyu on air pollution in the Yangtze River Delta, East China, the gaseous pollutant concentrations, the 9 sizes segregated particles, and water-soluble inorganic ions of aerosols were measured on the north shore of Taihu Lake from June 4 to July 5, 2016. Results show that the mass concentrations of atmospheric particulate matters (PM2.5 and PM10) and main gaseous pollutants (SO2, NO2, CO, and O3) decrease during the Meiyu period, with the largest decline in PM10 and the smallest in CO. TWSII in atmospheric particles are mainly concentrated in fine particles during the Meiyu period. The values of ρ (TWSII) for PM1.1, PM1.1–2.1, and PM2.1–10 before the Meiyu onset are generally greater than those during the Meiyu period. During the first pollution process, the ρ(TWSII) for PM1.1 and PM1.1–2.1 first increase to the peak values, and then decrease during the moderate rainfall period, when the ρ(TWSII) in PM2.1–10 increase to its maximum before the Meiyu onset. The mass concentrations for anions, cations, and total ions at different particle-size sections all exhibit bimodal distributions before and after the Meiyu onset. The mass concentration peaks at a particle size of 1.1–2.1 μm for fine particles, while at 5.8–9.0 μm (before the Meiyu onset) and 9.0–10.0 μm (during the Meiyu period) for coarse particles, respectively. The peak particle size for mass concentration of coarse particles moves toward larger sizes during the Meiyu period. The mass concentrations of SO42− at different particle-size sections show a bimodal distribution before the Meiyu onset and a multi-modal distribution during the Meiyu period. The mass concentrations of NO3− at different particle-size sections show a bimodal distribution before the Meiyu onset and a unimodal distribution during the Meiyu period. The mass concentrations of NH4+ at different particle-size sections present a bimodal distribution before and after the Meiyu onset, with the particle-size for peak concentrations distributing in 1.1–2.1 and 5.8–9.0 μm before the Meiyu onset, and 9.0–10.0 μm during the Meiyu period. The mean value of nitrogen oxidation ratio (NOR) is higher before the Meiyu onset than after, indicating that the secondary conversion of NO2 before the Meiyu onset is enhanced. The sulfur oxidation ratio (SOR) values are greater than NOR values, but the concentrations of NO2 in the same period during the Meiyu period are higher than those of SO2, which indicates that the secondary conversion of SO2 during the Meiyu period on the north bank of Taihu Lake is stronger than that of NO2. During the whole observation, the contribution of stationary sources mainly contributed to the atmospheric particulate matters during the Meiyu period. The contributions of vehicle exhaust and coal combustion to fine particles are more obviously affected by the changes in meteorological conditions during the Meiyu period, and the vehicle emissions contribute more to PM1.1–2.1 than to PM1.1.


2017 ◽  
Vol 75 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Telma Castro ◽  
Oscar Peralta ◽  
Dara Salcedo ◽  
José Santos ◽  
María I. Saavedra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document