scholarly journals Microphysical and radiative characterization of a subvisible midlevel Arctic ice cloud by airborne observations – a case study

2009 ◽  
Vol 9 (8) ◽  
pp. 2647-2661 ◽  
Author(s):  
A. Lampert ◽  
A. Ehrlich ◽  
A. Dörnbrack ◽  
O. Jourdan ◽  
J.-F. Gayet ◽  
...  

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed south of Svalbard at around 3 km altitude. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in situ instruments. Collocated airborne lidar remote sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in situ sensors roughly 30 min later. From individual ice crystal samples detected with the Cloud Particle Imager and the ensemble of particles measured with the Polar Nephelometer, microphysical properties were retrieved with a bi-modal inversion algorithm. The best agreement with the measurements was obtained for small ice spheres and deeply rough hexagonal ice crystals. Furthermore, the single-scattering albedo, the scattering phase function as well as the volume extinction coefficient and the effective diameter of the crystal population were determined. A lidar ratio of 21(±6) sr was deduced by three independent methods. These parameters in conjunction with the cloud optical thickness obtained from the lidar measurements were used to compute spectral and broadband radiances and irradiances with a radiative transfer code. The simulated results agreed with the observed spectral downwelling radiance within the range given by the measurement uncertainty. Furthermore, the broadband radiative simulations estimated a net (solar plus thermal infrared) radiative forcing of the subvisible midlevel ice cloud of −0.4 W m−2 (−3.2 W m−2 in the solar and +2.8 W m−2 in the thermal infrared wavelength range).

2009 ◽  
Vol 9 (1) ◽  
pp. 595-634
Author(s):  
A. Lampert ◽  
A. Ehrlich ◽  
A. Dörnbrack ◽  
O. Jourdan ◽  
J.-F. Gayet ◽  
...  

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed at around 3 km altitude south of Svalbard. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in-situ instruments. Collocated airborne lidar remote-sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in-situ sensors roughly 30 min later. From individual ice crystal samples detected with the Cloud Particle Imager and the ensemble of particles measured with the Polar Nephelometer, we retrieved the single-scattering albedo, the scattering phase function as well as the volume extinction coefficient and the effective diameter of the crystal population. Furthermore, a lidar ratio of 21 (±6) sr was deduced by two independent methods. These parameters in conjunction with the cloud optical thickness obtained from the lidar measurements were used to compute spectral and broadband radiances and irradiances with a radiative transfer code. The simulated results agreed with the observed spectral downwelling radiance within the range given by the measurement uncertainty. Furthermore, the broadband radiative simulations estimated a net (solar plus thermal infrared) radiative forcing of the subvisible midlevel ice cloud of −0.4 W m−2 (−3.2 W m−2 in the solar and +2.8 W m−2 in the thermal infrared wavelength range).


2018 ◽  
Vol 18 (23) ◽  
pp. 17325-17354 ◽  
Author(s):  
David L. Mitchell ◽  
Anne Garnier ◽  
Jacques Pelon ◽  
Ehsan Erfani

Abstract. A new satellite remote sensing method is described whereby the sensitivity of thermal infrared wave resonance absorption to small ice crystals is exploited to estimate cirrus cloud ice-particle number concentration N, effective diameter De and ice water content IWC. This method uses co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 and 12.05 µm. Using particle size distributions measured over many flights of the TC4 (Tropical Composition, Cloud and Climate Coupling) and the mid-latitude SPARTICUS (Small Particles in Cirrus) field campaigns, we show for the first time that N∕IWC is tightly related to βeff; the ratio of effective absorption optical depths at 12.05 and 10.6 µm. Relationships developed from in situ aircraft measurements are applied to βeff derived from IIR measurements to retrieve N. This satellite remote sensing method is constrained by measurements of βeff from the IIR and is by essence sensitive to the smallest ice crystals. Retrieval uncertainties are discussed, including uncertainties related to in situ measurement of small ice crystals (D<15 µm), which are studied through comparisons with IIR βeff. The method is applied here to single-layered semi-transparent clouds having a visible optical depth between about 0.3 and 3, where cloud base temperature is ≤235 K. CALIPSO data taken over 2 years have been analyzed for the years 2008 and 2013, with the dependence of cirrus cloud N and De on altitude, temperature, latitude, season (winter vs. summer) and topography (land vs. ocean) described. The results for the mid-latitudes show a considerable dependence on season. In the high latitudes, N tends to be highest and De smallest, whereas the opposite is true for the tropics. The frequency of occurrence of these relatively thick cirrus clouds exhibited a strong seasonal dependence in the high latitudes, with the occurrence frequency during Arctic winter being at least twice that of any other season. Processes that could potentially explain some of these micro- and macroscopic cloud phenomena are discussed.


2014 ◽  
Vol 11 (13) ◽  
pp. 3547-3602 ◽  
Author(s):  
P. Ciais ◽  
A. J. Dolman ◽  
A. Bombelli ◽  
R. Duren ◽  
A. Peregon ◽  
...  

Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.


2020 ◽  
Vol 12 (17) ◽  
pp. 2774
Author(s):  
Marta Konik ◽  
Piotr Kowalczuk ◽  
Monika Zabłocka ◽  
Anna Makarewicz ◽  
Justyna Meler ◽  
...  

The Nordic Seas and the Fram Strait regions are a melting pot of a number of water masses characterized by distinct optical water properties. The warm Atlantic Waters transported from the south and the Arctic Waters from the north, combined with the melt waters contributing to the Polar Waters, mediate the dynamic changes of the year-to-year large-scale circulation patterns in the area, which often form complex frontal zones. In the last decade, moreover, a significant shift in phytoplankton phenology in the area has been observed, with a certain northward expansion of temperate phytoplankton communities into the Arctic Ocean which could lead to a deterioration in the performance of remote sensing algorithms. In this research, we exploited the capability of the satellite sensors to monitor those inter-annual changes at basin scales. We propose locally adjusted algorithms for retrieving chlorophyll a concentrations Chla, absorption by particles ap at 443 and 670 nm, and total absorption atot at 443 and 670 nm developed on the basis of intensive field work conducted in 2013–2015. Measured in situ hyper spectral remote sensing reflectance has been used to reconstruct the MODIS and OLCI spectral channels for which the proposed algorithms have been adapted. We obtained MNB ≤ 0.5% for ap(670) and ≤3% for atot(670) and Chla. RMS was ≤30% for most of the retrieved optical water properties except ap(443) and Chla. The mean monthly mosaics of ap(443) computed on the basis of the proposed algorithm were used for reconstructing the spatial and temporal changes of the phytoplankton biomass in 2013–2015. The results corresponded very well with in situ measurements.


2020 ◽  
Author(s):  
Tuukka Petäjä ◽  
Ella-Maria Duplissy ◽  
Ksenia Tabakova ◽  
Julia Schmale ◽  
Barbara Altstädter ◽  
...  

Abstract. The role of polar regions increases in terms of megatrends such as globalization, new transport routes, demography and use of natural resources consequent effects of regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project iCUPE – integrative and Comprehensive Understanding on Polar Environments to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth Observations (EO) and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns and satellites to deliver data products, metrics and indicators to the stakeholders concerning the environmental status, availability and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and provision of novel data in atmospheric pollution, local sources and transboundary transport, characterization of arctic surfaces and their changes, assessment of concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, quantification of emissions from natural resource extraction and validation and optimization of satellite Earth Observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of integration of comprehensive in situ observations, satellite remote sensing and multiscale modeling in the Arctic context.


2019 ◽  
Vol 12 (3) ◽  
pp. 1635-1658 ◽  
Author(s):  
Kevin Wolf ◽  
André Ehrlich ◽  
Marek Jacob ◽  
Susanne Crewell ◽  
Martin Wirth ◽  
...  

Abstract. In situ measurements of cloud droplet number concentration N are limited by the sampled cloud volume. Satellite retrievals of N suffer from inherent uncertainties, spatial averaging, and retrieval problems arising from the commonly assumed strictly adiabatic vertical profiles of cloud properties. To improve retrievals of N it is suggested in this paper to use a synergetic combination of passive and active airborne remote sensing measurement, to reduce the uncertainty of N retrievals, and to bridge the gap between in situ cloud sampling and global averaging. For this purpose, spectral solar radiation measurements above shallow trade wind cumulus were combined with passive microwave and active radar and lidar observations carried out during the second Next Generation Remote Sensing for Validation Studies (NARVAL-II) campaign with the High Altitude and Long Range Research Aircraft (HALO) in August 2016. The common technique to retrieve N is refined by including combined measurements and retrievals of cloud optical thickness τ, liquid water path (LWP), cloud droplet effective radius reff, and cloud base and top altitude. Three approaches are tested and applied to synthetic measurements and two cloud scenarios observed during NARVAL-II. Using the new combined retrieval technique, errors in N due to the adiabatic assumption have been reduced significantly.


2020 ◽  
Author(s):  
Tyler Mixa ◽  
Andreas Dörnbrack ◽  
Bernd Kaifler ◽  
Markus Rapp

&lt;p&gt;We present numerical simulations of a deep orographic gravity wave (GW) event observed by the ALIMA airborne lidar on 11-12 September 2019 over Southern Argentina. The measurements are taken from the 2019 SOUTHTRAC Campaign, employing a comprehensive suite of remote sensing and in-situ instruments onboard the HALO research aircraft to study the stratospheric GW hotspot over Tierra del Fuego and the Antarctic Peninsula. Wind conditions on 11-12 September exhibit local and large-scale directional shear from the ground to the polar night jet, creating a complex propagation environment supporting multiple orientations of GW propagation and strong potential for local GW breaking and secondary GW generation. Using high resolution numerical models, we simulate the 3D evolution of the orographic GW field to analyze&lt;span&gt; the remote sensing and in-situ measurements from the event.&lt;/span&gt;&lt;/p&gt;


2014 ◽  
Vol 14 (16) ◽  
pp. 8235-8254 ◽  
Author(s):  
G. Ancellet ◽  
J. Pelon ◽  
Y. Blanchard ◽  
B. Quennehen ◽  
A. Bazureau ◽  
...  

Abstract. Lidar and in situ observations performed during the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) campaign are reported here in terms of statistics to characterize aerosol properties over northern Europe using daily airborne measurements conducted between Svalbard and Scandinavia from 30 March to 11 April 2008. It is shown that during this period a rather large number of aerosol layers was observed in the troposphere, with a backscatter ratio at 532 nm of 1.2 (1.5 below 2 km, 1.2 between 5 and 7 km and a minimum in between). Their sources were identified using multispectral backscatter and depolarization airborne lidar measurements after careful calibration analysis. Transport analysis and comparisons between in situ and airborne lidar observations are also provided to assess the quality of this identification. Comparison with level 1 backscatter observations of the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were carried out to adjust CALIOP multispectral observations to airborne observations on a statistical basis. Recalibration for CALIOP daytime 1064 nm signals leads to a decrease of their values by about 30%, possibly related to the use of the version 3.0 calibration procedure. No recalibration is made at 532 nm even though 532 nm scattering ratios appear to be biased low (−8%) because there are also significant differences in air mass sampling between airborne and CALIOP observations. Recalibration of the 1064 nm signal or correction of −5% negative bias in the 532 nm signal both could improve the CALIOP aerosol colour ratio expected for this campaign. The first hypothesis was retained in this work. Regional analyses in the European Arctic performed as a test emphasize the potential of the CALIOP spaceborne lidar for further monitoring in-depth properties of the aerosol layers over Arctic using infrared and depolarization observations. The CALIOP April 2008 global distribution of the aerosol backscatter reveal two regions with large backscatter below 2 km: the northern Atlantic between Greenland and Norway, and northern Siberia. The aerosol colour ratio increases between the source regions and the observations at latitudes above 70° N are consistent with a growth of the aerosol size once transported to the Arctic. The distribution of the aerosol optical properties in the mid-troposphere supports the known main transport pathways between the mid-latitudes and the Arctic.


2009 ◽  
Vol 9 (4) ◽  
pp. 15125-15179 ◽  
Author(s):  
A. Lampert ◽  
C. Ritter ◽  
A. Hoffmann ◽  
J.-F. Gayet ◽  
G. Mioche ◽  
...  

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR), which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar) and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km) cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (around 300 cm−3) at low temperatures (−30°C). Observations of a boundary layer mixed-phase cloud by airborne lidar were evaluated with the measurements of concurrent airborne in situ and spectral solar radiation sensors. Two detailed observations of multiply layered clouds in the free troposphere are presented. The first case was composed of various ice layers with different optical properties detected with the Raman lidar, the other case showed a mixed-phase double layer and was observed by airborne lidar. The analysis of these four cases confirmed that lidar data provide information of the whole range from subvisible to optically thick clouds. Despite the attenuation of the laser signal in optically thick clouds and multiple scattering effects, information on the geometrical boundaries of liquid water clouds were obtained. Furthermore, the dominating phase of the clouds' particles in the layer closest to the lidar system could be retrieved.


Sign in / Sign up

Export Citation Format

Share Document