scholarly journals Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

2009 ◽  
Vol 9 (16) ◽  
pp. 6077-6093 ◽  
Author(s):  
J. J. West ◽  
V. Naik ◽  
L. W. Horowitz ◽  
A. M. Fiore

Abstract. Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs) and carbon monoxide (CO) by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

2009 ◽  
Vol 9 (2) ◽  
pp. 7033-7077
Author(s):  
J. J. West ◽  
V. Naik ◽  
L. W. Horowitz ◽  
A. M. Fiore

Abstract. Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs) and carbon monoxide (CO) by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.


2009 ◽  
Vol 9 (2) ◽  
pp. 7079-7113 ◽  
Author(s):  
J. J. West ◽  
V. Naik ◽  
L. W. Horowitz ◽  
A. M. Fiore

Abstract. Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would avoid this disbenefit.


2009 ◽  
Vol 9 (16) ◽  
pp. 6095-6107 ◽  
Author(s):  
J. J. West ◽  
V. Naik ◽  
L. W. Horowitz ◽  
A. M. Fiore

Abstract. Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would avoid this disbenefit.


2014 ◽  
Vol 14 (3) ◽  
pp. 1385-1396 ◽  
Author(s):  
H. Lei ◽  
J. X. L. Wang

Abstract. As precursors to tropospheric ozone and nitrate, nitrogen oxide (NOx) in the present atmosphere and its transformation in response to emission and climate perturbations are studied by using the CAM-Chem model and air quality measurements from the National Emissions Inventory (NEI), Clean Air Status and Trends Network (CASTNET), and Environmental Protection Agency Air Quality System (EPA AQS). It is found that NOx transformations in present atmospheric conditions show different sensitivities over industrial and non-industrial regions. As a result, the surface ozone and nitrate formations can be divided into several regimes associated with the dominant emission types and relative levels of NOx and volatile organic compounds (VOC). Ozone production in industrial regions (the main NOx emission source areas) increases in warmer conditions and slightly decreases following an increase in NOx emissions due to NOx titration, which is opposite to the response in non-industrial regions. The ozone decrease following a temperature increase in non-industrial regions indicates that ozone production in regions that lack NOx emission sources may be sensitive to NOx transformation in remote source regions. The increase in NO2 from NOx titration over industrial regions results in an increase rate of total nitrate that remains higher than the increase rate of NOx emissions. The presented findings indicate that a change in the ozone concentration is more directly affected by changes in climate and precursor emissions, while a change in the nitrate concentration is affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that a warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations of the historical emissions and air quality records of a typical NOx-limited area, such as Atlanta and a VOC-limited area, such as Los Angeles further confirm the conclusions drawn from the modeling experiments.


2020 ◽  
Author(s):  
Yury Shtabkin ◽  
Konstantin Moiseenko ◽  
Andrey Skorokhod ◽  
Elena Berezina

<p>Effect of photochemically active species emissions on near-surface air composition in industrial regions is non-local and in many cases can be traced in transcontinental scale. Largescaled plumes of polluted air defined by observations of tracer species on background stations and calculations with chemical-transport models are examples of this effect. In this work we use GEOS-Chem chemical transport model to make an assessment of influence have anthropogenic and biogenic emissions in Europe, European territory of Russia (ETR) and Siberia on total ozone generation taking into account common non-linear properties of O<sub>3</sub>–NO<sub>x</sub>–СО–VOC system. It is shown that increasing of ozone production rate due to regional anthropogenic emissions of NO<sub>x</sub> leads to substantial (up to 20 ppbv) increase of near-surface ozone concentrations in mid-latitudes traced up to 120E. The predominant role of long-range air transport against regional sources of photochemical ozone production was determined for the most part of European Russia and Siberia.<br>We also make a numerical assessment of ozone balance in Europe, ETR and Siberia. Annual ozone total mass in lower troposphere (from surface to 800 hPa) for Europe, ETR and Siberia depending on region is 1.5–2.4 Tg in warm period (1 April – 30 September) and 1.3–2.2 Tg in cold period (1 October - 31 March). Ozone production in chemical processes with a high degree of accuracy (about 99%) is balanced by total atmospheric transport, while absolute variations in O<sub>3 </sub>total mass do not exceed 0.5 Tg/year in Europe and 0.4 Tg/year in Siberia.<br>This work was supported by the Russian Foundation for Basic Research under grant 18-35-20031.</p>


2018 ◽  
Vol 18 (3) ◽  
pp. 2175-2198 ◽  
Author(s):  
Emmanouil Oikonomakis ◽  
Sebnem Aksoyoglu ◽  
Giancarlo Ciarelli ◽  
Urs Baltensperger ◽  
André Stephan Henry Prévôt

Abstract. High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10–20 ppb and overestimates the lower ones (< 40 ppb) by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i) increased volatile organic compound (VOC) emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii) increased nitrogen oxide (NOx) emissions by a factor of 2, (iii) a combination of the first two scenarios and (iv) increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area) Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 ∘C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the opposite effects. Overall, the modeled ozone is predicted to be more sensitive to its precursor emissions (especially traffic NOx) and therefore their uncertainties, which seem to be responsible for the model underestimation of the observed high ozone mixing ratios and ozone production.


2012 ◽  
Vol 12 (10) ◽  
pp. 27219-27254
Author(s):  
N. A. D. Richards ◽  
S. R. Arnold ◽  
M. P. Chipperfield ◽  
G. Miles ◽  
A. Rap ◽  
...  

Abstract. The Mediterranean troposphere exhibits a marked and localised summertime ozone maximum, which has the potential to strongly impact regional air quality and radiative forcing. The Mediterranean region can be perturbed by long-range pollution import from Northern Europe, North America and Asia, in addition to local emissions, which may all contribute to regional ozone enhancements. We exploit ozone profile observations from the Tropospheric Emission Spectrometer (TES) and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite instruments, and an offline 3-D global chemical transport model (TOMCAT) to investigate the geographical and vertical structure of the summertime tropospheric ozone maximum over the Mediterranean region. We show that both TES and GOME-2 are able to detect enhanced levels of ozone in the lower troposphere over the region during the summer. These observations, together with surface measurements, are used to evaluate the TOMCAT model's ability to capture the observed ozone enhancement. The model is used to quantify contributions to the ozone maximum from anthropogenic and natural volatile organic compound (VOC) emissions, anthropogenic NOx emissions, wildfire emissions and long-range import of ozone and precursors. Our results show a dominance of natural VOC emissions on ozone in the Mediterranean Basin over anthropogenic VOC emissions. However, local anthropogenic NOx emissions are the overall dominant contribution to near-surface ozone. We also show that in the lower troposphere, global VOC emissions account for 40% of the VOC contribution to ozone in the region, whereas, for NOx the global contribution is only 10% at these altitudes. However, in the mid and upper troposphere almost all of the ozone comes from long-range transport for all emission sources. In terms of radiative effects on regional climate, ozone contributions from non-local sources are more important with Asian monsoon outflow having the greatest impact. Our results allow improved understanding of the large-scale processes controlling air quality and climate in the region of the Mediterranean Basin.


2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


2016 ◽  
Vol 16 (18) ◽  
pp. 11601-11615 ◽  
Author(s):  
Jane Coates ◽  
Kathleen A. Mar ◽  
Narendra Ojha ◽  
Tim M. Butler

Abstract. Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of emitted VOCs. The box model simulations approximating stagnant conditions and the maximal ozone production chemical regime reproduced the 2 ppbv increase in ozone per degree Celsius from the observational and regional model data over central Europe. The simulated ozone–temperature relationship was more sensitive to mixing than the choice of chemical mechanism. Our analysis suggests that reductions in NOx emissions would be required to offset the additional ozone production due to an increase in temperature in the future.


2010 ◽  
Vol 10 (14) ◽  
pp. 6645-6660 ◽  
Author(s):  
P. Huszar ◽  
D. Cariolle ◽  
R. Paoli ◽  
T. Halenka ◽  
M. Belda ◽  
...  

Abstract. In general, regional and global chemistry transport models apply instantaneous mixing of emissions into the model's finest resolved scale. In case of a concentrated source, this could result in erroneous calculation of the evolution of both primary and secondary chemical species. Several studies discussed this issue in connection with emissions from ships and aircraft. In this study, we present an approach to deal with the non-linear effects during dispersion of NOx emissions from ships. It represents an adaptation of the original approach developed for aircraft NOx emissions, which uses an exhaust tracer to trace the amount of the emitted species in the plume and applies an effective reaction rate for the ozone production/destruction during the plume's dilution into the background air. In accordance with previous studies examining the impact of international shipping on the composition of the troposphere, we found that the contribution of ship induced surface NOx to the total reaches 90% over remote ocean and makes 10–30% near coastal regions. Due to ship emissions, surface ozone increases by up to 4–6 ppbv making 10% contribution to the surface ozone budget. When applying the ship plume parameterization, we show that the large scale NOx decreases and the ship NOx contribution is reduced by up to 20–25%. A similar decrease was found in the case of O3. The plume parameterization suppressed the ship induced ozone production by 15–30% over large areas of the studied region. To evaluate the presented parameterization, nitrogen monoxide measurements over the English Channel were compared with modeled values and it was found that after activating the parameterization the model accuracy increases.


Sign in / Sign up

Export Citation Format

Share Document