scholarly journals What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea?

2009 ◽  
Vol 9 (18) ◽  
pp. 6815-6831 ◽  
Author(s):  
E. Marmer ◽  
F. Dentener ◽  
J. v. Aardenne ◽  
F. Cavalli ◽  
E. Vignati ◽  
...  

Abstract. Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference ranging from a factor of 1.5 to even an order of magnitude. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast because densely populated regions with significant human activity contribute relatively more to air pollution than ships, even if these regions attract a lot of ship traffic. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.

2009 ◽  
Vol 9 (2) ◽  
pp. 7155-7211 ◽  
Author(s):  
E. Marmer ◽  
F. Dentener ◽  
J. v. Aardenne ◽  
F. Cavalli ◽  
E. Vignati ◽  
...  

Abstract. Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference from a factor of 1.5 to two orders of magnitude. Despite these large discrepancies in existing ship emission inventories for air pollutants very little has been done to evaluate their consistency with atmospheric measurements at open sea. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.


2021 ◽  
Vol 21 (10) ◽  
pp. 7671-7694
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol–climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g. the Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1∘ × 0.1∘) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 – CMIP6, Emission Database for Global Atmospheric Research-V4 – EDGAR-V4, and Peking University BC Inventory – PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450–1000 kg km−2 yr−1) over most of the IGP, with this being the highest (> 2500 kg km−2 yr−1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14–25 µg m−3 (6–8 µg m−3) and 0.04–0.08 µg m−3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj–Allahabad–Varanasi (central IGP), Patna–Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (+30 to +50 W m−2) to be about 50 %–70 % larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of the atmosphere (TOA) of 10–15 W m−2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %–50% lower from the bottomup than the Constrained simulation.


2015 ◽  
Vol 3 (6) ◽  
pp. 3687-3732 ◽  
Author(s):  
U. Dayan ◽  
K. M. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes producing heavy rain storms. It distinguishes the Western and Eastern Mediterranean in order to point at specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger scale circulations. The synoptic systems (tropical and extra-tropical) accounting for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper-level synoptic-scale troughs, and meso-scale convective systems. Under tropical air mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2021 ◽  
Author(s):  
Johannes Vogel

&lt;p&gt;The ecosystems of the Mediterranean Basin are particularly prone to climate change and related alterations in climatic anomalies. The seasonal timing of climatic anomalies is crucial for the assessment of the corresponding ecosystem impacts; however, the incorporation of seasonality is neglected in many studies. We quantify ecosystem vulnerability by investigating deviations of the climatic drivers temperature and soil moisture during phases of low ecosystem productivity for each month of the year over the period 1999 &amp;#8211; 2019. The fraction of absorbed photosynthetically active radiation (FAPAR) is used as a proxy for ecosystem productivity. Air temperature is obtained from the reanalysis data set ERA5 Land and soil moisture and FAPAR satellite products are retrieved from ESA CCI and Copernicus Global Land Service, respectively. Our results show that Mediterranean ecosystems are vulnerable to three soil moisture regimes during the course of the year. A phase of vulnerability to hot and dry conditions during late spring to midsummer is followed by a period of vulnerability to cold and dry conditions in autumn. The third phase is characterized by cold and wet conditions coinciding with low ecosystem productivity in winter and early spring. These phases illustrate well the shift between a soil moisture-limited regime in summer and an energy-limited regime in winter in the Mediterranean Basin. Notably, the vulnerability to hot and dry conditions during the course of the year is prolonged by several months in the Eastern Mediterranean compared to the Western Mediterranean. Our approach facilitates a better understanding of ecosystem vulnerability at certain stages during the year and is easily transferable to other study areas and ecoclimatological variables.&lt;/p&gt;


2015 ◽  
Vol 15 (11) ◽  
pp. 2525-2544 ◽  
Author(s):  
U. Dayan ◽  
K. Nissen ◽  
U. Ulbrich

Abstract. This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.


2003 ◽  
Vol 3 (3) ◽  
pp. 851-861 ◽  
Author(s):  
R. Kormann ◽  
H. Fischer ◽  
M. de Reus ◽  
M. Lawrence ◽  
Ch. Brühl ◽  
...  

Abstract. Formaldehyde (HCHO) is an important intermediate product in the photochemical degradation of methane and non-methane volatile organic compounds. In August 2001, airborne formaldehyde measurements based on the Hantzsch reaction technique were performed during the Mediterranean INtensive Oxidant Study, MINOS. The detection limit of the instrument was 42 pptv (1s) at a time resolution of 180 s (10-90%). The overall uncertainty of the HCHO measurements was 30% at a mixing ratio of 300 pptv. In the marine boundary layer over the eastern Mediterranean Sea average HCHO concentrations were of the order of 1500 pptv, in reasonable agreement with results from a three-dimensional global chemical transport model of the lower atmosphere including non-methane volatile organic compound (NMVOC) chemistry. Above the boundary layer HCHO mixing ratios decreased with increasing altitude to a minimum level of 250 pptv at about 7 km. At higher altitudes (above 7 km) HCHO levels showed a strong dependency on the airmass origin. In airmasses from the North Atlantic/North American area HCHO levels were of the order of 300 pptv, a factor of 6 higher than values predicted by the model. Even higher HCHO levels, increasing to values of the order of 600 pptv at 11 km altitude, were observed in easterlies transporting air affected by the Indian monsoon outflow towards the Mediterranean basin. Only a small part (~30 pptv) of the large discrepancy between the model results and the measurements of HCHO in the free troposphere could be explained by a strong underestimation of the upper tropospheric acetone concentration by up to a factor of ten by the 3D-model. Therefore, the measurement-model difference in the upper troposphere remains unresolved, while the observed dependency of HCHO on airmass origin might indicate that unknown, relatively long-lived NMVOCs - or their reaction intermediates - associated with biomass burning are at least partially responsible for the observed discrepancies.


2014 ◽  
Vol 14 (13) ◽  
pp. 7091-7112 ◽  
Author(s):  
C. He ◽  
Q. B. Li ◽  
K. N. Liou ◽  
J. Zhang ◽  
L. Qi ◽  
...  

Abstract. We systematically evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model (CTM) (GEOS-Chem) driven by GEOS-5 assimilated meteorological fields, using in situ measurements of BC in surface air, BC in snow, and BC absorption aerosol optical depth (AAOD). Using improved anthropogenic BC emission inventories for Asia that account for rapid technology renewal and energy consumption growth (Zhang et al., 2009; Lu et al., 2011) and improved global biomass burning emission inventories that account for small fires (van der Werf et al., 2010; Randerson et al., 2012), we find that model results of both BC in surface air and in snow are statistically in good agreement with observations (biases < 15%) away from urban centers. Model results capture the seasonal variations of the surface BC concentrations at rural sites in the Indo-Gangetic Plain, but the observed elevated values in winter are absent. Modeled surface-BC concentrations are within a factor of 2 of the observations at remote sites. Part of the discrepancy is explained by the deficiencies of the meteorological fields over the complex Tibetan terrain. We find that BC concentrations in snow computed from modeled BC deposition and GEOS-5 precipitation are spatiotemporally consistent with observations (r = 0.85). The computed BC concentrations in snow are a factor of 2–4 higher than the observations at several Himalayan sites because of excessive BC deposition. The BC concentrations in snow are biased low by a factor of 2 in the central plateau, which we attribute to the absence of snow aging in the CTM and strong local emissions unaccounted for in the emission inventories. Modeled BC AAOD is more than a factor of 2 lower than observations at most sites, particularly to the northwest of the plateau and along the southern slopes of the Himalayas in winter and spring, which is attributable in large part to underestimated emissions and the assumption of external mixing of BC aerosols in the model. We find that assuming a 50% increase of BC absorption associated with internal mixing reduces the bias in modeled BC AAOD by 57% in the Indo-Gangetic Plain and the northeastern plateau and to the northeast of the plateau, and by 16% along the southern slopes of the Himalayas and to the northwest of the plateau. Both surface BC concentration and AAOD are strongly sensitive to anthropogenic emissions (from China and India), while BC concentration in snow is especially responsive to the treatment of BC aerosol aging. We find that a finer model resolution (0.5° × 0.667° nested over Asia) reduces the bias in modeled surface-BC concentration from 15 to 2%. The large range and non-homogeneity of discrepancies between model results and observations of BC across the Tibetan Plateau undoubtedly undermine current assessments of the climatic and hydrological impact of BC in the region and thus warrant imperative needs for more extensive measurements of BC, including its concentration in surface air and snow, AAOD, vertical profile and deposition.


2018 ◽  
Vol 46 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Leigh Royden ◽  
Claudio Faccenna

The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.


2021 ◽  
Author(s):  
Johannes Vogel ◽  
Eva Paton ◽  
Valentin Aich

Abstract. Mediterranean ecosystems are particularly vulnerable to climate change and the associated increase in climate extremes. This study investigates extreme ecosystem responses evoked by climatic drivers in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations, as the seasonal timing of climatic anomalies is considered essential for impact and vulnerability assessment. A bivariate vulnerability analysis is performed for each month of the year to quantify which combinations of the drivers temperature (obtained from ER5 Land) and soil moisture (obtained from ESA CCI and ERA5 Land) lead to extreme reductions of ecosystem productivity using the fraction of absorbed photosynthetically active radiation (FAPAR; obtained from Copernicus Global Land Service) as a proxy. The bivariate analysis clearly showed that, in many cases, it is not just one but a combination of both drivers that causes ecosystem vulnerability. The overall pattern shows that Mediterranean ecosystems are prone to three soil moisture regimes during the yearly cycle: They are vulnerable to hot and dry conditions from May to July, to cold and dry conditions from August to October, and to cold conditions from November to April, illustrating the shift from a soil moisture-limited regime in summer to an energy-limited regime in winter. In late spring, a month with significant vulnerability to hot conditions only often precedes the next stage of vulnerability to both hot and dry conditions, suggesting that high temperatures lead to critically low soil moisture levels with a certain time lag. In the eastern Mediterranean, the period of vulnerability to hot and dry conditions within the year is much longer than in the western Mediterranean. Our results show that it is crucial to account for both spatial and temporal variability to adequately assess ecosystem vulnerability. The seasonal vulnerability approach presented in this study helps to provide detailed insights regarding the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.


Sign in / Sign up

Export Citation Format

Share Document