scholarly journals What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea?

2009 ◽  
Vol 9 (2) ◽  
pp. 7155-7211 ◽  
Author(s):  
E. Marmer ◽  
F. Dentener ◽  
J. v. Aardenne ◽  
F. Cavalli ◽  
E. Vignati ◽  
...  

Abstract. Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference from a factor of 1.5 to two orders of magnitude. Despite these large discrepancies in existing ship emission inventories for air pollutants very little has been done to evaluate their consistency with atmospheric measurements at open sea. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.

2009 ◽  
Vol 9 (18) ◽  
pp. 6815-6831 ◽  
Author(s):  
E. Marmer ◽  
F. Dentener ◽  
J. v. Aardenne ◽  
F. Cavalli ◽  
E. Vignati ◽  
...  

Abstract. Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference ranging from a factor of 1.5 to even an order of magnitude. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast because densely populated regions with significant human activity contribute relatively more to air pollution than ships, even if these regions attract a lot of ship traffic. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.


2021 ◽  
Vol 21 (10) ◽  
pp. 7671-7694
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol–climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g. the Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1∘ × 0.1∘) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 – CMIP6, Emission Database for Global Atmospheric Research-V4 – EDGAR-V4, and Peking University BC Inventory – PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450–1000 kg km−2 yr−1) over most of the IGP, with this being the highest (> 2500 kg km−2 yr−1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14–25 µg m−3 (6–8 µg m−3) and 0.04–0.08 µg m−3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj–Allahabad–Varanasi (central IGP), Patna–Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (+30 to +50 W m−2) to be about 50 %–70 % larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of the atmosphere (TOA) of 10–15 W m−2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %–50% lower from the bottomup than the Constrained simulation.


2003 ◽  
Vol 3 (3) ◽  
pp. 851-861 ◽  
Author(s):  
R. Kormann ◽  
H. Fischer ◽  
M. de Reus ◽  
M. Lawrence ◽  
Ch. Brühl ◽  
...  

Abstract. Formaldehyde (HCHO) is an important intermediate product in the photochemical degradation of methane and non-methane volatile organic compounds. In August 2001, airborne formaldehyde measurements based on the Hantzsch reaction technique were performed during the Mediterranean INtensive Oxidant Study, MINOS. The detection limit of the instrument was 42 pptv (1s) at a time resolution of 180 s (10-90%). The overall uncertainty of the HCHO measurements was 30% at a mixing ratio of 300 pptv. In the marine boundary layer over the eastern Mediterranean Sea average HCHO concentrations were of the order of 1500 pptv, in reasonable agreement with results from a three-dimensional global chemical transport model of the lower atmosphere including non-methane volatile organic compound (NMVOC) chemistry. Above the boundary layer HCHO mixing ratios decreased with increasing altitude to a minimum level of 250 pptv at about 7 km. At higher altitudes (above 7 km) HCHO levels showed a strong dependency on the airmass origin. In airmasses from the North Atlantic/North American area HCHO levels were of the order of 300 pptv, a factor of 6 higher than values predicted by the model. Even higher HCHO levels, increasing to values of the order of 600 pptv at 11 km altitude, were observed in easterlies transporting air affected by the Indian monsoon outflow towards the Mediterranean basin. Only a small part (~30 pptv) of the large discrepancy between the model results and the measurements of HCHO in the free troposphere could be explained by a strong underestimation of the upper tropospheric acetone concentration by up to a factor of ten by the 3D-model. Therefore, the measurement-model difference in the upper troposphere remains unresolved, while the observed dependency of HCHO on airmass origin might indicate that unknown, relatively long-lived NMVOCs - or their reaction intermediates - associated with biomass burning are at least partially responsible for the observed discrepancies.


2014 ◽  
Vol 14 (13) ◽  
pp. 7091-7112 ◽  
Author(s):  
C. He ◽  
Q. B. Li ◽  
K. N. Liou ◽  
J. Zhang ◽  
L. Qi ◽  
...  

Abstract. We systematically evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model (CTM) (GEOS-Chem) driven by GEOS-5 assimilated meteorological fields, using in situ measurements of BC in surface air, BC in snow, and BC absorption aerosol optical depth (AAOD). Using improved anthropogenic BC emission inventories for Asia that account for rapid technology renewal and energy consumption growth (Zhang et al., 2009; Lu et al., 2011) and improved global biomass burning emission inventories that account for small fires (van der Werf et al., 2010; Randerson et al., 2012), we find that model results of both BC in surface air and in snow are statistically in good agreement with observations (biases < 15%) away from urban centers. Model results capture the seasonal variations of the surface BC concentrations at rural sites in the Indo-Gangetic Plain, but the observed elevated values in winter are absent. Modeled surface-BC concentrations are within a factor of 2 of the observations at remote sites. Part of the discrepancy is explained by the deficiencies of the meteorological fields over the complex Tibetan terrain. We find that BC concentrations in snow computed from modeled BC deposition and GEOS-5 precipitation are spatiotemporally consistent with observations (r = 0.85). The computed BC concentrations in snow are a factor of 2–4 higher than the observations at several Himalayan sites because of excessive BC deposition. The BC concentrations in snow are biased low by a factor of 2 in the central plateau, which we attribute to the absence of snow aging in the CTM and strong local emissions unaccounted for in the emission inventories. Modeled BC AAOD is more than a factor of 2 lower than observations at most sites, particularly to the northwest of the plateau and along the southern slopes of the Himalayas in winter and spring, which is attributable in large part to underestimated emissions and the assumption of external mixing of BC aerosols in the model. We find that assuming a 50% increase of BC absorption associated with internal mixing reduces the bias in modeled BC AAOD by 57% in the Indo-Gangetic Plain and the northeastern plateau and to the northeast of the plateau, and by 16% along the southern slopes of the Himalayas and to the northwest of the plateau. Both surface BC concentration and AAOD are strongly sensitive to anthropogenic emissions (from China and India), while BC concentration in snow is especially responsive to the treatment of BC aerosol aging. We find that a finer model resolution (0.5° × 0.667° nested over Asia) reduces the bias in modeled surface-BC concentration from 15 to 2%. The large range and non-homogeneity of discrepancies between model results and observations of BC across the Tibetan Plateau undoubtedly undermine current assessments of the climatic and hydrological impact of BC in the region and thus warrant imperative needs for more extensive measurements of BC, including its concentration in surface air and snow, AAOD, vertical profile and deposition.


2020 ◽  
Author(s):  
Christoph A. Keller ◽  
Mathew J. Evans ◽  
K. Emma Knowland ◽  
Christa A. Hasenkopf ◽  
Sruti Modekurty ◽  
...  

Abstract. Social-distancing to combat the COVID-19 pandemic has led to widespread reductions in air pollutant emissions. Quantifying these changes requires a business as usual counterfactual that accounts for the synoptic and seasonal variability of air pollutants. We use a machine learning algorithm driven by information from the NASA GEOS-CF model to assess changes in nitrogen dioxide (NO2) and ozone (O3) at 5756 observation sites in 46 countries from January through June 2020. Reductions in NO2 correlate with timing and intensity of COVID-19 restrictions, ranging from 60 % in severely affected cities (e.g., Wuhan, Milan) to little change (e.g., Rio de Janeiro, Taipei). On average, NO2 concentrations were 18 % lower than business as usual from February 2020 onward. China experienced the earliest and steepest decline, but concentrations since April have mostly recovered and remained within 5 % to the business as usual estimate. NO2 reductions in Europe and the US have been more gradual with a halting recovery starting in late March. We estimate that the global NOx (NO + NO2) emission reduction during the first 6 months of 2020 amounted to 2.9 TgN, equivalent to 5.1 % of the annual anthropogenic total. The response of surface O3 is complicated by competing influences of non-linear atmospheric chemistry. While surface O3 increased by up to 50 % in some locations, we find the overall net impact on daily average O3 between February–June 2020 to be small. However, our analysis indicates a flattening of the O3 diurnal cycle with an increase in night time ozone due to reduced titration and a decrease in daytime ozone, reflecting a reduction in photochemical production. The O3 response is dependent on season, time scale, and environment, with declines in surface O3 forecasted if NOx emission reductions continue.


2020 ◽  
Vol 12 (18) ◽  
pp. 7621
Author(s):  
Shuanghui Bao ◽  
Osamu Nishiura ◽  
Shinichiro Fujimori ◽  
Ken Oshiro ◽  
Runsen Zhang

Asian countries are major contributors to global air pollution and greenhouse gas emissions, with transportation demand and emissions expected to increase. However, few studies have been performed to evaluate policies that could reduce transport-related emissions in the region. This study explores transport-related CO2 and air pollutant emissions in major Asian nations along with the impacts of transport, climate, and emission control policies using the Asia-Pacific Integrated Model (AIM)/Transport model. Our results show that by 2050, CO2 emissions in developing countries will be 1.4–4.7-fold greater than the levels in 2005, while most air pollutant emissions will show large reductions (mean annual reduction rates of 0.2% to 6.1%). Notably, implementation of transport, emission control, and carbon pricing policies would reduce CO2 emissions by up to 33% and other air pollutants by 43% to 72%, depending on the emission species. An emission control policy represents the strongest approach for short-term and mid-term reduction of air pollutants. A carbon pricing policy would lead to a direct reduction in CO2 emissions; more importantly, air pollutant emissions would also be effectively reduced. Shifting to public transportation in developing countries can also greatly influence emissions reductions. An increase in traffic speed shows relatively small effects, but can be meaningful in Japan.


2013 ◽  
Vol 13 (15) ◽  
pp. 7567-7585 ◽  
Author(s):  
V. V. Petrenko ◽  
P. Martinerie ◽  
P. Novelli ◽  
D. M. Etheridge ◽  
I. Levin ◽  
...  

Abstract. We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol−1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol−1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol−1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.


2014 ◽  
Vol 14 (23) ◽  
pp. 12883-12895 ◽  
Author(s):  
A. Fraser ◽  
P. I. Palmer ◽  
L. Feng ◽  
H. Bösch ◽  
R. Parker ◽  
...  

Abstract. We use the GEOS-Chem global 3-D atmospheric chemistry transport model to interpret XCH4:XCO2 column ratios retrieved from the Japanese Greenhouse Gases Observing Satellite (GOSAT). The advantage of these data over CO2 and CH4 columns retrieved independently using a full physics optimal estimation algorithm is that they are less prone to scattering-related regional biases. We show that the model is able to reproduce observed global and regional spatial (mean bias =0.7%) and temporal variations (global r2=0.92) of this ratio with a model bias < 2.5%. We also show that these variations are driven by emissions of CO2 and CH4 that are typically 6 months out of phase, which may reduce the sensitivity of the ratio to changes in either gas. To simultaneously estimate fluxes of CO2 and CH4 we use a maximum likelihood estimation approach. We use two approaches to resolve independent flux estimates of these two gases using GOSAT observations of XCH4:XCO2: (1) the a priori error covariance between CO2 and CH4 describing common source from biomass burning; and (2) also fitting independent surface atmospheric measurements of CH4 and CO2 mole fraction that provide additional constraints, improving the effectiveness of the observed GOSAT ratio to constrain flux estimates. We demonstrate the impact of these two approaches using numerical experiments. A posteriori flux estimates inferred using only the GOSAT ratios and taking advantage of the error covariance due to biomass burning are not consistent with the true fluxes in our experiments, as the inversion system cannot judge which species' fluxes to adjust. This reflects the weak dependence of XCH4:XCO2 on biomass burning. We find that adding the surface data effectively provides an "anchor" to the inversion that dramatically improves the ability of the GOSAT ratios to infer both CH4 and CO2 fluxes. We show that the regional flux estimates inferred from GOSAT XCH4:XCO2 ratios together with the surface mole fraction data during 2010 are typically consistent with or better than the corresponding values inferred from fitting XCH4 or the full-physics XCO2 data products, as judged by a posteriori uncertainties. We show that the fluxes inferred from the ratio measurements perform best over regions where there is a large seasonal cycle such as Tropical South America, for which we report a small but significant annual source of CO2 compared to a small annual sink inferred from the XCO2 data. We argue that given that the ratio measurements are less compromised by systematic error than the full physics data products, the resulting a~posteriori estimates and uncertainties provide a more faithful description of the truth. Based on our analysis we also argue that by using the ratios we may be reaching the current limits on the precision of these observed space-based data.


2013 ◽  
Vol 13 (8) ◽  
pp. 22025-22058 ◽  
Author(s):  
P. Zanis ◽  
P. Hadjinicolaou ◽  
A. Pozzer ◽  
E. Tyrlis ◽  
S. Dafka ◽  
...  

Abstract. Observations show that the Mediterranean troposphere is characterized by a marked enhancement in summertime ozone with a maximum over the Eastern Mediterranean. This has been linked to enhanced ozone photochemical production and subsidence under cloud-free anticyclonic conditions. The Eastern Mediterranean region has among the highest levels of background tropospheric ozone around the globe and it can be considered as a global air pollution hotspot. A 12 yr climatological analysis (1998–2009) of free tropospheric ozone was carried out over the region based on ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis data and simulations with the EMAC (ECHAM5-MESSy for Atmospheric Chemistry) atmospheric chemistry climate model. EMAC is nudged towards the ECMWF analysis data and includes a stratospheric ozone tracer. A characteristic summertime pool with high ozone concentrations is found in the middle troposphere over the Eastern Mediterranean/Middle East (EMME) by ERA-interim ozone data, which is supported by Tropospheric Emission Spectrometer (TES) satellite ozone data and simulations with EMAC. The enhanced ozone over the EMME is a robust feature, propagating down to lower free tropospheric levels. The investigation of ozone in relation to potential vorticity and water vapour and the stratospheric ozone tracer indicates that the dominant mechanism causing the free tropospheric ozone pool is downward transport from the upper troposphere and lower stratosphere associated with the enhanced subsidence and the limited outflow transport that dominates the summertime EMME circulation. The implications of these summertime high free tropospheric ozone values on the seasonal cycle of near surface ozone over the Mediterranean are discussed.


2004 ◽  
Vol 4 (3) ◽  
pp. 2301-2331 ◽  
Author(s):  
A. M. Cordova ◽  
K. Longo ◽  
S. Freitas ◽  
L. V. Gatti ◽  
P. Artaxo ◽  
...  

Abstract. An intensive atmospheric chemistry study was carried out in a pristine Amazonian forest site (Balbina), Amazonas state, Brazil during the 2001 wet season, as part of the LBA/CLAIRE 2001 (The Large Scale Biosphere Atmosphere Experiment in Amazonia/Cooperative LBA Airborne Regional Experiment) field campaign. Measurements of nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were performed simultaneously with aerosol particles and black carbon concentrations and meteorological parameters observations. Very low trace gases and aerosol concentrations are typically observed at this pristine tropical site. During the measurement period, there was a three-day episode of enhancement of NO2 and black carbon concentration. NO2 concentration reached a maximum value of 4 ppbv, which corresponds to three times the background concentration observed for this site. Black carbon concentration increased from the approximated 100 ng/m3 average value to a 200 ng/m3 maximum during the same period. Biomass burning spots were detected southward, between latitudes 15 to 10° S, 5–6 days before this episode from GOES-8 WF_ABBA (Wildfire Automated Biomass Burning Algorithm). An atmospheric numerical simulation of the whole measurement period was carried out using the RAMS model coupled to a biomass burning emission and transport model. The simulation results pictured a smoke transport event from Central Brazil associated to an approach of a mid-latitude cold front, reinforcing the hypothesis of biomass burning products being long-range transported from the South by the cold front and crossing the Equator. This transport event shows how the pristine atmosphere pattern in Amazonia is impacted by biomass burning emissions from sites very far away.


Sign in / Sign up

Export Citation Format

Share Document