scholarly journals Hydration and dehydration at the tropical tropopause

2009 ◽  
Vol 9 (24) ◽  
pp. 9647-9660 ◽  
Author(s):  
C. Schiller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Plöger ◽  
F. H. Silva dos Santos ◽  
...  

Abstract. High-resolution water measurements from three tropical airborne missions in Northern Australia, Southern Brazil and West Africa in different seasons are analysed to study the transport and transformation of water in the tropical tropopause layer (TTL) and its impact on the stratosphere. The mean profiles are quite different according to the season and location of the campaigns, with lowest mixing ratios below 2 ppmv at the cold point tropopause during the Australian mission in November/December and high TTL mixing ratios during the African measurements in August. We present backward trajectory calculations considering freeze-drying of the air to the minimum saturation mixing ratio and initialised with climatological satellite data. This trajectory-based reconstruction of water agrees well with the observed H2O average profiles and therefore demonstrates that the water vapour set point in the TTL is primarily determined by the Lagrangian saturation history. Deep convection was found to moisten the TTL, in several events even above the cold point up to 420 K potential temperatures. However, our study does not provide evidence for a larger impact of these highly-localised events on global scales.

2009 ◽  
Vol 9 (4) ◽  
pp. 17495-17529 ◽  
Author(s):  
C. Schiller ◽  
J.-U. Grooß ◽  
P. Konopka ◽  
F. Plöger ◽  
F. H. Silva dos Santos ◽  
...  

Abstract. High-resolution water measurements from three tropical airborne missions in Northern Australia, Southern Brazil and West Africa in different seasons are analysed to study the transport and transformation of water in the tropical tropopause layer (TTL) and its impact on the stratosphere. The mean profiles are quite different according to the season and location of the campaigns, with lowest mixing ratios below 2 ppmv at the cold point tropopause during the Australian mission in November/December and high TTL mixing ratios during the African measurements in August. We present backward trajectory calculations considering freeze-drying of the air to the minimum saturation mixing ratio and initialised with climatological satellite data. This trajectory-based reconstruction of water agrees well with the observed H2O average profiles and therefore demonstrates that the water vapour set point in the TTL is primarily determined by the Lagrangian saturation history. Deep convection was found to moisten the TTL, in several events even above the cold point up to 420 K potential temperatures. However, our study does not provide evidence for a larger impact of these highly-localised events on global scales.


2017 ◽  
Author(s):  
Richard Newton ◽  
Geraint Vaughan ◽  
Eric Hintsa ◽  
Michal T. Filus ◽  
Laura L. Pan ◽  
...  

Abstract. Ozonesondes reaching the tropical tropopause layer (TTL) over the West Pacific have occasionally measured layers of very low ozone concentrations – less than 15 ppbv – raising the question of how prevalent such layers are and how they are formed. In this paper we examine aircraft measurements from the ATTREX, CAST and CONTRAST campaigns based in Guam in January–March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 hPa and 150 hPa of between 10.5 ppbv and 14.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values


2021 ◽  
Author(s):  
Maximilien Bolot ◽  
Stephan Fueglistaler

<p>The role played by tropical storms in the tropical tropopause layer (TTL), the transitional layer regulating the flux into the stratosphere of trace gases affecting radiation and the ozone layer, has been a long-standing open question. Progress has been slow because of computational limitations and challenging conditions for measurements and most numerical studies have used simulations over limited domains whose results must be upscaled to the tropical surface to infer global impacts. We compute the first global observational estimate of the convective ice flux at near tropical tropopause levels by using spaceborne lidar measurements from CALIOP. The calculation uses a method to convert from lidar extinction to sedimenting ice flux and uses error propagation to provide margins of uncertainty. We show that, at any given level in the TTL, the sedimenting ice flux exceeds the inflow of vapor computed from ERA5 reanalysis, revealing additional ice transport and allowing to deduce the advective ice flux as a function of altitude. The contribution to this flux of large-scale motions (resolved by ERA5) is computed and the residual is hypothesized to represent the flux of ice on the convective scale. Results show without ambiguity that the upward ice flux in deep convection dominates moisture transport up to close to the level of the cold point tropopause.</p>


2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.


2009 ◽  
Vol 9 (6) ◽  
pp. 25049-25084 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyze the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL) above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, horizontal inmixing across the subtropical tropopause, and horizontal transport across the subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin. When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights, increasing above this level to 0.2±0.15 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10 and 25° N latitude where isentropic mixing between these two regions may occur.


2021 ◽  
Author(s):  
Albert Hertzog ◽  
Riwal Plougonven ◽  

<p>Strateole-2 is a project aimed at studying the coupling between the troposphere and the stratosphere in the deep tropics. The project originality pertains to the use of long-duration ballons, which can fly for several months at 18 or 20 km altitude. The first Strateole-2 campaign took place from November 2019 to February 2020: 8 balloons with various instrumental configurations were released in the lower stratosphere from Seychelles Islands, in the Indian Ocean.<br>This first campaign was primarily devoted to testing all systems (balloons, gondolas, and instruments) developed for the project, and was very successful: the balloons flew for 85 days onaverage over the whole tropical band, and most instruments performed nominally. In-situ meteorological measurements performed every 30-s on each flight provide a unique description of gravity-wave activity in the tropics and its relation to deep convection. The first observations of aerosols and water vapor onboard long-duration balloons were also achieved, which e.g. highlighted the tape recorder signal in the tropical lower stratosphere. Very innovative instruments also premiered during the campaign: RACHuTS, a light reeled payload, for instance performed 50 high-resolution vertical profiles of temperature, aerosols and water vapor down to 2km below the balloon, crossing several times the cold-point tropopause. ROC collected hundreds of temperature profiles down to the middle troposphere through GPS radio-occultations. Last, one balloon also carried a nadir-pointing backscatter lidar, which has described the underlying convection at unprecedented temporal resolution. An overview of the flights and first results will be presented.<br>Two forthcoming balloon campaigns are planned within Strateole-2, in 2021-22 and 2024-25. Each will release 20 balloons. </p>


2007 ◽  
Vol 7 (14) ◽  
pp. 3713-3736 ◽  
Author(s):  
B. N. Duncan ◽  
S. E. Strahan ◽  
Y. Yoshida ◽  
S. D. Steenrod ◽  
N. Livesey

Abstract. We present a modeling study of the troposphere-to-stratosphere transport (TST) of pollution from major biomass burning regions to the tropical upper troposphere and lower stratosphere (UT/LS). TST occurs predominately through 1) slow ascent in the tropical tropopause layer (TTL) to the LS and 2) quasi-horizontal exchange to the lowermost stratosphere (LMS). We show that biomass burning pollution regularly and significantly impacts the composition of the TTL, LS, and LMS. Carbon monoxide (CO) in the LS in our simulation and data from the Aura Microwave Limb Sounder (MLS) shows an annual oscillation in its composition that results from the interaction of an annual oscillation in slow ascent from the TTL to the LS and seasonal variations in sources, including a semi-annual oscillation in CO from biomass burning. The impacts of CO sources that peak when ascent is seasonally low are damped (e.g. Southern Hemisphere biomass burning) and vice-versa for sources that peak when ascent is seasonally high (e.g. extra-tropical fossil fuels). Interannual variation of CO in the UT/LS is caused primarily by year-to-year variations in biomass burning and the locations of deep convection. During our study period, 1994–1998, we find that the highest concentrations of CO in the UT/LS occurred during the strong 1997–1998 El Niño event for two reasons: i. tropical deep convection shifted to the eastern Pacific Ocean, closer to South American and African CO sources, and ii. emissions from Indonesian biomass burning were higher. This extreme event can be seen as an upper bound on the impact of biomass burning pollution on the UT/LS. We estimate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS (>60 mb) by more than 40% and 10%, respectively, for several months. Zonal mean ozone increased and the hydroxyl radical decreased by as much as 20%, increasing the lifetimes and, subsequently TST, of trace gases. Our results indicate that the impact of biomass burning pollution on the UT/LS is likely greatest during an El Niño event due to favorable dynamics and historically higher burning rates.


2012 ◽  
Vol 12 (9) ◽  
pp. 25833-25885 ◽  
Author(s):  
F. Hasebe ◽  
Y. Inai ◽  
M. Shiotani ◽  
M. Fujiwara ◽  
H. Vömel ◽  
...  

Abstract. A network of balloon-born radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since late 1990s in the Tropical Pacific trying to capture the progress of dehydration for the air parcels advected horizontally in the Tropical Tropopause Layer (TTL). The analyses of this dataset are made on isentropes taking advantage of the conservative properties of tracers in adiabatic motion. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in the relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Further observational evidence is needed to confirm the credibility of such high values of RHice. The progress of TTL dehydration is reflected in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. The supersaturation exceeding the critical value of the homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on 360 and 365 K surfaces indicating that the cold trap dehydration is under progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) on 380 K on the other hand implies that this surface is not significantly cold for the advected air parcels to be dehydrated. Above 380 K, the cold trap dehydration would scarcely function while some moistening in turn occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.


2015 ◽  
Vol 15 (12) ◽  
pp. 16655-16696 ◽  
Author(s):  
R. Newton ◽  
G. Vaughan ◽  
H. M. A. Ricketts ◽  
L. L. Pan ◽  
A. J. Weinheimer ◽  
...  

Abstract. We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February, of which 34 gave good ozone profiles. Particular attention was paid to measuring the background current of the ozonesonde before launch, as this can amount to half the measured signal in the tropical tropopause layer (TTL). An unexpected contamination event affected these measurements and required a departure from standard operating procedures for the ozonesondes. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current <50 nA) a constant background current should be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12–13 ppbv; no examples of near-zero ozone concentration as reported by other recent papers were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.


2007 ◽  
Vol 7 (2) ◽  
pp. 5515-5552 ◽  
Author(s):  
C. Ren ◽  
A. R. MacKenzie ◽  
C. Schiller ◽  
G. Shur ◽  
V. Yushkov

Abstract. We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics. The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign), have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2 μmol/mol. Without adding water back to some of the trajectories, the LACM and instantaneous-dehydration reconstructions have a dry bias. The interpolated-ECMWF reconstruction does not suffer this dry bias, because convection in the ECMWF model moistens air parcels dramatically, by pumping moist air upwards. This indicates that the ECMWF model captures the gross features of the rehydration of air in the TTL by convection. Overall, the ECMWF models captures well the exponential decrease in total water mixing ratio with height above 250 hPa, so that all the reconstruction techniques capture more than 75% of the variance in the measured total water mixing ratios over the depth of the TTL. We have therefore developed a simple method for re-setting the total water in LACM using the ECMWF-analysed specific humidity in regions where the model predicts convection. By picking up the main contributing processes to dehydration and rehydration in the TTL, LACM reconstructs total water mixing ratios along aircraft flight tracks at the top of the TTL, close to the cold point, that are always in substantially better agreement with observations than instantaneous-dehydration reconstructions, and better than the ECMWF analysis for regions of high relative humidity and cloud.


Sign in / Sign up

Export Citation Format

Share Document