scholarly journals A subsiding regional forest fire aerosol layer at Whistler, BC: implications for interpretation of mountaintop chemistry observations

2010 ◽  
Vol 10 (8) ◽  
pp. 20303-20327
Author(s):  
I. G. Mc Kendry ◽  
J. Gallagher ◽  
P. Campuzano Jost ◽  
A. Bertram ◽  
K. Strawbridge ◽  
...  

Abstract. On 30 August 2009, intense forest fires in interior BC, together with synoptic scale meteorological subsidence and easterly winds resulted in transport of a broad forest fire plume across southwestern BC. The physico-chemical and optical characteristics of the plume as observed from Saturna island (AERONET), CORALNet-UBC and the Whistler Mountain air chemistry facility were consistent with forest fire plumes that have been observed elsewhere in continental North America. However, the importance of smoke plume subsidence in relation to the interpretation of mountaintop chemistry observations is highlighted on the basis of deployment both a CL31 ceilometer and a single particle mass spectrometer (SPMS) in a mountainous setting. The SPMS was used to identify the biomass plume based on levoglucosan and potassium markers. Data from the SPMS are also used to show that the biomass plume was correlated with nitrate, but not correlated with sulphate or sodium. This study not only provides baseline measurements of biomass burning plume physico-chemical characteristics in western Canada, but also highlights the importance of lidar remote sensing methods in the interpretation of mountaintop chemistry measurements.

2010 ◽  
Vol 10 (23) ◽  
pp. 11921-11930 ◽  
Author(s):  
I. G. McKendry ◽  
J. Gallagher ◽  
P. Campuzano Jost ◽  
A. Bertram ◽  
K. Strawbridge ◽  
...  

Abstract. On 30 August 2009, intense forest fires in interior British Columbia (BC) coupled with winds from the east and northeast resulted in transport of a broad forest fire plume across southwestern BC. The physico-chemical and optical characteristics of the plume as observed from Saturna Island (AERONET), CORALNet-UBC and the Whistler Mountain air chemistry facility were consistent with forest fire plumes that have been observed elsewhere in continental North America. However, the importance of three-dimensional transport in relation to the interpretation of mountaintop chemistry observations is highlighted on the basis of deployment of both a CL31 ceilometer and a single particle mass spectrometer (SPMS) in a mountainous setting. The SPMS is used to identify the biomass plume based on levoglucosan and potassium markers. Data from the SPMS are also used to show that the biomass plume was correlated with nitrate, but not correlated with sulphate or sodium. This study not only provides baseline measurements of biomass burning plume physico-chemical characteristics in western Canada, but also highlights the importance of lidar remote sensing methods in the interpretation of mountaintop chemistry measurements.


2010 ◽  
Vol 10 (9) ◽  
pp. 21047-21075 ◽  
Author(s):  
I. McKendry ◽  
K. Strawbridge ◽  
M. L. Karumudi ◽  
N. O'Neill ◽  
A. M. Macdonald ◽  
...  

Abstract. Forest fires in Northern California and Oregon were responsible for two significant regional scale aerosol transport events observed in southern British Columbia during summer 2008. A combination of ground based (CORALNet) and satellite (CALIPSO) lidar, sunphotometry and high altitude chemistry observations permitted unprecedented characterization of forest fire plume height and mixing as well as description of optical properties and physicochemistry of the aerosol. In southwestern BC, lidar observations show the smoke to be mixed through a layer extending to 5–6 km a.g.l. where the aerosol was confined by an elevated inversion in both cases. Depolarization ratios for a trans-Pacific dust event (providing a basis for comparison) and the two smoke events were consistent with observations of dust and smoke events elsewhere and permit discrimination of aerosol events in the region. Based on sunphotometry, the Aerosol Optical Thicknesses (AOT) reached maxima of ~0.7 and ~0.4 for the two events respectively. Dubovik-retrieval values of reff,f during both the June/July and August events varied between about 0.13 and 0.15 μm and confirm the dominance of accumulation mode size particles in the forest fire plumes. Both Whistler Peak and Mount Bachelor Observatory data show that smoke events are accompanied by elevated CO and O3 concentrations as well as elevated K+/SO4 ratios. In addition to documenting the meteorology and physico-chemical characteristics of two regional scale biomass burning plumes, this study demonstrates the positive analytical synergies arising from the suite of measurements now in place in the Pacific Northwest, and complemented by satellite borne instruments.


2011 ◽  
Vol 11 (2) ◽  
pp. 465-477 ◽  
Author(s):  
I. McKendry ◽  
K. Strawbridge ◽  
M. L. Karumudi ◽  
N. O'Neill ◽  
A. M. Macdonald ◽  
...  

Abstract. Forest fires in Northern California and Oregon were responsible for two significant regional scale aerosol transport events observed in southern British Columbia during summer 2008. A combination of ground based (CORALNet) and satellite (CALIPSO) lidar, sunphotometry and high altitude chemistry observations permitted unprecedented characterization of forest fire plume height and mixing as well as description of optical properties and physicochemistry of the aerosol. In southwestern BC, lidar observations show the smoke to be mixed through a layer extending to 5–6 km a.g.l. where the aerosol was confined by an elevated inversion in both cases. Depolarization ratios for a trans-Pacific dust event (providing a basis for comparison) and the two smoke events were consistent with observations of dust and smoke events elsewhere and permit discrimination of aerosol events in the region. Based on sunphotometry, the Aerosol Optical Thicknesses (AOT) reached maxima of ~0.7 and ~0.4 for the two events respectively. Dubovik-retrieval values of reff, f during both the June/July and August events varied between about 0.13 and 0.15 μm and confirm the dominance of accumulation mode size particles in the forest fire plumes. Both Whistler Peak and Mount Bachelor Observatory data show that smoke events are accompanied by elevated CO and O3 concentrations as well as elevated K+/SO4 ratios. In addition to documenting the meteorology and physic-chemical characteristics of two regional scale biomass burning plumes, this study demonstrates the positive analytical synergies arising from the suite of measurements now in place in the Pacific Northwest, and complemented by satellite borne instruments.


2016 ◽  
Vol 16 (5) ◽  
pp. 3485-3497 ◽  
Author(s):  
Marcella Busilacchio ◽  
Piero Di Carlo ◽  
Eleonora Aruffo ◽  
Fabio Biancofiore ◽  
Cesare Dari Salisburgo ◽  
...  

Abstract. The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates ∑PNs, ∑ROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of  ∑PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of ∑PNs, whereas minimal increase of the concentrations of O3 and NO2 is observed. The ∑PN and O3 productions have been calculated using the rate constants of the first- and second-order reactions of volatile organic compound (VOC) oxidation. The ∑PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of ∑PNs and O3 are greater than in the background plumes, but the increase of ∑PN production is more pronounced than the O3 production. The average ∑PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3,  but (1 ∑PN production is amplified significantly more than O3 production and (2) in the forest fire plumes the ratio between the O3 production and the ∑PN production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ∑PNs produced during biomass burning is significant in the O3 budget. The implication of these observations is that fire emissions in some cases, for example boreal forest fires and in the conditions reported here, may influence more long-lived precursors of O3 than short-lived pollutants, which in turn can be transported and eventually diluted in a wide area.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
Wenjia Wang ◽  
Qixing Zhang ◽  
Jie Luo ◽  
Ranran Zhao ◽  
Yongming Zhang

Forest fire emissions have a great impact on local air quality and the global climate. However, the current and detailed regional forest fire emissions inventories remain poorly studied. Here we used Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate monthly emissions from forest fires at a spatial resolution of 500 m × 500 m in southwest China from 2013 to 2017. The spatial and seasonal variations of forest fire emissions were then analyzed at the provincial level. The results showed that the annual average emissions of CO2, CO, CH4, SO2, NH3, NOX, PM, black carbon, organic carbon, and non-methane volatile organic compounds from forest fires were 1423.19 × 103, 91.66 × 103, 4517.08, 881.07, 1545.04, 1268.28, 9838.91, 685.55, 7949.48, and 12,724.04 Mg, respectively. The forest fire emissions characteristics were consistent with the characteristics of forest fires, which show great spatial and temporal diversity. Higher pollutant emissions were concentrated in Yunnan and Tibet, with peak emissions occurring in spring and winter. Our work provides a better understanding of the spatiotemporal representation of regional forest fire emissions and basic data for forest fire management departments and related research on pollution and emissions controls. This method will also provide guidance for other areas to develop high-resolution regional forest fire emissions inventories.


2020 ◽  
Vol 66 (No. 8) ◽  
pp. 329-388
Author(s):  
Ekaterina Podolskaia

Modern geospatial technologies and permanently updated wildfire monitoring datasets are the basis of improving forest firefighting on different administrative scales. One of the tasks is to use the spatial representation of forest fire locations during the fire season and offer timely suitable technical options for accessing them. We developed a GIS technology to create forest fire ground access routes for special firefighting vehicles moving from a ground firefighting base (fire-chemical station) to the place of the forest fire detection; the technology includes a statistical and geospatial accessibility analysis of the routes. The key data are a transport model consisting of public roads and forest glades on the regional scale. We described the main principles of the transport model construction and usage, and their implementation for the Russian Federal Districts. An access routes database for the 2002–2019 fire seasons, a central part of the Siberian Federal District, was produced and analysed. By using a hot spot analysis, we confirmed that forest fires are poorly accessible away from the centre of the Siberian District. The created road accessibility maps show “a proposed ground access zone” within the key area to fight forest fires for the fire seasons to come.


2020 ◽  
Author(s):  
Antonin Zabukovec ◽  
Gerard Ancellet ◽  
Iwan E. Penner ◽  
Mikhail Arshinov ◽  
Valery Kozlov ◽  
...  

Abstract. Airborne backscatter lidar measurements at 532 nm were carried out over Siberia in July 2013 and June 2017. The Russian Tu-134 flew over major Siberian cities (Novosibirsk, Tomsk, Krasnoyarsk, Yakutsk), the gas flaring fields of the Ob valley and Siberian Taiga in order to sample several kinds of Siberian aerosol sources. Aerosol types are derived using the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations, Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD), Infrared Atmospheric Sounding Interferometer (IASI) CO total column and AOD at 10 μm. Forest fire detection is based on NASA Fire Information for Resource Management System (FIRMS) from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) observations and airborne in-situ measurements when available. Six aerosol type could be identified in this work: (i) Dusty aerosol mixture (ii) Ob valley industrial emission (iii) fresh boreal forest fire plumes (iv) aged forest fire plumes (v) pollution over the Tomsk/Novosibirsk region (vi) long range transport of Chinese pollution over Yakutsk. The backscatter to extinction ratio and then the corresponding lidar ratio (LR) were derived for each of these 6 identified aerosol type, using an iterative method based on the Fernald forward inversion constrained by the 10 km MODIS collection 6 AOD distribution closed to the airborne lidar observation. The LR analysis showed that the lowest LR range was obtained for the Dusty Mix case (26–40 sr) and the highest for the urban and industrial pollution from the Tomsk/Novosibirsk area (71–90 sr). The comparison is good with previous estimate of LR according to the aerosol classification. The range of lidar ratio obtained for gas flaring emission (43–60 sr) was lower than the high values encountered in the Tomsk/Novosibirk urban area and has never been characterized using lidar observations. Airborne lidar backscatter ratio vertical structure, aerosol types and integrated LR derived from the airborne data analysis were compared to nearby CALIOP overpasses. These comparisons showed three main differences with the CALIOP LR and aerosol type classification over Siberia: (i) CALIOP aerosol layer can be classified as Elevated smoke instead of Polluted continental and vice versa, but with little influence on the LR value (ii) aging and transport of aerosol layers effect on the CALIOP LR value is not always properly accounted for even when the CALIOP classification is correct (iii) the lack of discrimination between fresh and old fire plume leads to an overestimation of the optical depth for the fresh fires in the CALIOP AOD over the fire source region.


2010 ◽  
Vol 161 (11) ◽  
pp. 460-464
Author(s):  
Andrea Kaltenbrunner

Thanks to fast alarm systems and modern fire-fighting equipment most forest fires can be extinguished while still very small. Nevertheless, the fire brigade and forest organisations in the Grisons are recurringly confronted with larger fires. Over the past twenty years the Grisons Forestry Service and the fire section of the cantonal Building Insurance Company have invested in fire prevention and improved fire-fighting techniques. To monitor and assess the risk of forest fires, the computer-aided forest fire forecasting system “Incendi” was developed. On its basis, regional forest fire risk maps are drawn up and bans on the lighting of fires are imposed. For use in case of fire, the Forestry Service has drawn up maps of the whole Canton Grisons showing water supply points in and near the forest. Where there are gaps in the water supply, artificial water sources are being created. Fifteen years ago a concept of forest fire-fighting bases was elaborated. The most important elements of this concept are the 18 regional depots of mobile fire-fighting material, which in case of emergency can be transported where needed. The present-day administrative structures and the precautionary measures taken in the Grisons fulfil the conditions for efficient forest fire prevention and control.


2005 ◽  
Vol 5 (2) ◽  
pp. 345-355 ◽  
Author(s):  
F. Immler ◽  
D. Engelbart ◽  
O. Schrems

Abstract. With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003 an extended aerosol layer at 13km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal that we detected with a water vapour Raman channel, but that was not produced by Raman scattering. Also, we find evidence for inelastic scattering from a smoke plume from a forest fire that we observed in the troposphere. We interpret the unexpected properties of these aerosols as fluorescence induced by the laser beam at organic components of the aerosol particles. Fluorescence from ambient aerosol had not yet been considered detectable by lidar systems. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates, inelastic backscatter signals that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.


2020 ◽  
Vol 13 (12) ◽  
pp. 7069-7096
Author(s):  
Robert B. Chatfield ◽  
Meinrat O. Andreae ◽  
◽  

Abstract. Studies of emission factors from biomass burning using aircraft data complement the results of lab studies and extend them to conditions of immense hot conflagrations. A new theoretical development of plume theory for multiple tracers is developed after examining aircraft samples. We illustrate and discuss emissions relationships for 422 individual samples from many forest fire plumes in the Western USA. Samples are from two NASA investigations: ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys). This work provides sample-by-sample enhancement ratios (EnRs) for 23 gases and particulate properties. Many EnRs provide candidates for emission ratios (ERs, corresponding to the EnR at the source) when the origin and degree of transformation is understood. From these, emission factors (EFs) can be estimated, provided the fuel dry mass consumed is known or can be estimated using the carbon mass budget approach. This analysis requires understanding the interplay of mixing of the plume with surrounding air. Some initial examples emphasize that measured Ctot=CO2+CO in a fire plume does not necessarily describe the emissions of the total carbon liberated in the flames, Cburn. Rather, it represents Ctot=Cburn+Cbkgd, which includes possibly varying background concentrations for entrained air. Consequently, we present a simple theoretical description for plume entrainment for multiple tracers from the flame tops to hundreds of kilometers downwind and illustrate some intrinsic linear behaviors. The analysis suggests a mixed-effects regression emission technique (MERET), which can eliminate occasional strong biases associated with the commonly used normalized excess mixing ratio (NEMR) method. MERET splits Ctot to reveal Cburn by exploiting the fact that Cburn and all tracers respond linearly to dilution, while each tracer has consistent EnR behavior (slope of tracer concentration with respect to Cburn). The two effects are separable. Two or three or preferably more emission indicators are required as a minimum; here we used eight. In summary, MERET allows a fine spatial resolution (EnRs for individual observations) and comparison of similar plumes that are distant in time and space. Alkene ratios provide us with an approximate photochemical timescale. This allows discrimination and definition, by fire situation, of ERs, allowing us to estimate emission factors.


Sign in / Sign up

Export Citation Format

Share Document