scholarly journals First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite

2010 ◽  
Vol 10 (11) ◽  
pp. 28821-28857 ◽  
Author(s):  
G. Beyerle ◽  
L. Grunwaldt ◽  
S. Heise ◽  
W. Köhler ◽  
R. König ◽  
...  

Abstract. GPS radio occultation events observed between 24 July and 17 November 2008 by the IGOR occultation receiver aboard the TerraSAR-X satellite are processed and analyzed. The comparison of 16 262 refractivity profiles with collocated ECMWF data yield a mean bias of −0.60% to +0.02% at altitudes between 5 and 30 km. Standard deviations decrease from about 0.8% to 1.8% at 5 km to about 0.5% to 0.8% at about 10 km altitude. At low latitudes mean biases and standard deviations are larger, in particular in the lower troposphere. The results are consistent with 15 159 refractivity observations collected during the same time period by the BlackJack receiver aboard GRACE-A and processed by GFZ's operational processing system. The main difference between the two occultation instruments is the implementation of open-loop signal tracking in the IGOR (TerraSAR-X) receiver which improves the tropospheric penetration depth in terms of ray height by about 2 km compared to the conventional closed-loop data acquired by BlackJack (GRACE-A).

2011 ◽  
Vol 11 (13) ◽  
pp. 6687-6699 ◽  
Author(s):  
G. Beyerle ◽  
L. Grunwaldt ◽  
S. Heise ◽  
W. Köhler ◽  
R. König ◽  
...  

Abstract. GPS radio occultation events observed between 24 July and 17 November 2008 by the IGOR occultation receiver aboard the TerraSAR-X satellite are processed and analyzed. The comparison of 15 327 refractivity profiles with collocated ECMWF data yield a mean bias between zero and −0.30 % at altitudes between 5 and 30 km. Standard deviations decrease from about 1.4 % at 5 km to about 0.6 % at 10 km altitude, however, increase significantly in the upper stratosphere. At low latitudes mean biases and standard deviations are larger, in particular in the lower troposphere. The results are consistent with 15 159 refractivity observations collected during the same time period by the BlackJack receiver aboard GRACE-A and processed by GFZ's operational processing system. The main difference between the two occultation instruments is the implementation of open-loop signal tracking in the IGOR (TerraSAR-X) receiver which improves the tropospheric penetration depth in terms of ray height by about 2 km compared to the conventional closed-loop data acquired by BlackJack (GRACE-A).


2021 ◽  
Author(s):  
Jennifer D. Hegarty ◽  
Karen E. Cady-Pereira ◽  
Vivienne H. Payne ◽  
Susan S. Kulawik ◽  
John R. Worden ◽  
...  

Abstract. Single footprint retrievals of carbon monoxide from the Atmospheric Infrared Sounder (AIRS) are evaluated using aircraft in situ observations. The aircraft data are from the HIAPER Pole-to-Pole (HIPPO, 2009–2011), the first three Atmospheric Tomography Mission (ATom, 2016–2017) campaigns and the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Laboratory (GML) Global Greenhouse Gas Reference Network Aircraft Program from 2006–2017. The retrievals are obtained using an optimal estimation approach within the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) algorithm. Retrieval biases and estimated errors are evaluated across a range of latitudes from the sub-polar to tropical regions over both ocean and land points. AIRS MUSES CO profiles were compared with HIPPO, ATom, and NOAA GML aircraft observations with a coincidence of 9 hours and 50 km to estimate retrieval biases and standard deviations. Comparisons were done for different pressure levels and column averages, latitudes, day, night, land, and ocean observations. We find mean biases of +6.6 % +/− 4.6 %, +0.6 % +/− 3.2 %, −6.1 % +/− 3.0 %, and 1.4 % +/− 3.6 %, for 750 hPa, 510 hPa, 287 hPa, and the column averages, respectively. The mean standard deviation is 15 %, 11 %, 12 %, and 9 % at these same pressure levels, respectively. Observation errors (theoretical errors) from the retrievals were found to be broadly consistent in magnitude with those estimated empirically from ensembles of satellite aircraft comparisons. The GML Aircraft Program comparisons generally had higher standard deviations and biases than the HIPPO and ATom comparisons. Since the GML aircraft flights do not go as high as the HIPPO and ATom flights, results from these GML comparisons are more sensitive to the choice of method for extrapolation of the aircraft profile above the uppermost measurement altitude. The AIRS retrieval performance shows little sensitivity to surface type (land or ocean) or day or night but some sensitivity to latitude. Comparisons to the NOAA GML set spanning the years 2006–2017 show that the AIRS retrievals are able to capture the distinct seasonal cycles but show a high bias of ~20 % in the lower troposphere during the summer when observed CO mixing ratios are at annual minimum values. The retrieval bias drift was examined over the same period and found to be small at < 0.5 % over the 2006–2017 time period.


2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Xu Xu ◽  
Xiaolei Zou

Global Positioning System (GPS) radio occultation (RO) and radiosonde (RS) observations are two major types of observations assimilated in numerical weather prediction (NWP) systems. Observation error variances are required input that determines the weightings given to observations in data assimilation. This study estimates the error variances of global GPS RO refractivity and bending angle and RS temperature and humidity observations at 521 selected RS stations using the three-cornered hat method with additional ERA-Interim reanalysis and Global Forecast System forecast data available from 1 January 2016 to 31 August 2019. The global distributions, of both RO and RS observation error variances, are analyzed in terms of vertical and latitudinal variations. Error variances of RO refractivity and bending angle and RS specific humidity in the lower troposphere, such as at 850 hPa (3.5 km impact height for the bending angle), all increase with decreasing latitude. The error variances of RO refractivity and bending angle and RS specific humidity can reach about 30 N-unit2, 3 × 10−6 rad2, and 2 (g kg−1)2, respectively. There is also a good symmetry of the error variances of both RO refractivity and bending angle with respect to the equator between the Northern and Southern Hemispheres at all vertical levels. In this study, we provide the mean error variances of refractivity and bending angle in every 5°-latitude band between the equator and 60°N, as well as every interval of 10 hPa pressure or 0.2 km impact height. The RS temperature error variance distribution differs from those of refractivity, bending angle, and humidity, which, at low latitudes, are smaller (less than 1 K2) than those in the midlatitudes (more than 3 K2). In the midlatitudes, the RS temperature error variances in North America are larger than those in East Asia and Europe, which may arise from different radiosonde types among the above three regions.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Proff ◽  
B Merkely ◽  
R Papp ◽  
C Lenz ◽  
P.J Nordbeck ◽  
...  

Abstract Background The prevalence of chronotropic incompetence (CI) in heart failure (HF) population is high and negatively impacts prognosis. In HF patients with an implanted cardiac resynchronisation therapy (CRT) device and severe CI, the effect of rate adaptive pacing on patient outcomes is unclear. Closed loop stimulation (CLS) based on cardiac impedance measurement may be an optimal method of heart rate adaptation according to metabolic need in HF patients with severe CI. Purpose This is the first study evaluating the effect of CLS on the established prognostic parameters assessed by the cardio-pulmonary exercise (CPX) testing and on quality of life (QoL) of the patients. Methods A randomised, controlled, double-blind and crossover pilot study has been performed in CRT patients with severe CI defined as the inability to achieve 70% of the age-predicted maximum heart rate (APMHR). After baseline assessment, patients were randomised to either DDD-CLS pacing (group 1) or DDD pacing at 40 bpm (group 2) for a 1-month period, followed by crossover for another month. At baseline and at 1- and 2-month follow-ups, a CPX was performed and QoL was assessed using the EQ-5D-5L questionnaire. The main endpoints were the effect of CLS on ventilatory efficiency (VE) slope (evaluated by an independent CPX expert), the responder rate defined as an improvement (decrease) of the VE slope by at least 5%, percentage of maximal predicted heart rate reserve (HRR) achieved, and QoL. Results Of the 36 patients enrolled in the study, 20 fulfilled the criterion for severe CI and entered the study follow-up (mean age 68.9±7.4 years, 70% men, LVEF=41.8±9.3%, 40%/60% NYHA class II/III). Full baseline and follow-up datasets were obtained in 17 patients. The mean VE slope and HRR at baseline were 34.4±4.4 and 49.6±23.8%, respectively, in group 1 (n=7) and 34.5±12.2 and 54.2±16.1% in group 2 (n=10). After completing the 2-month CPX, the mean difference between DDD-CLS and DDD-40 modes was −2.4±8.3 (group 1) and −1.2±3.5 (group 2) for VE slope, and 17.1±15.5% (group 1) and 8.7±18.8% (group 2) for HRR. Altogether, VE slope improved by −1.8±2.95 (p=0.31) in DDD-CLS versus DDD-40, and HRR improved by 12.9±8.8% (p=0.01). The VE slope decreased by ≥5% in 47% of patients (“responders to CLS”). The mean difference in the QoL between DDD-CLS and DDD-40 was 0.16±0.25 in group 1 and −0.01±0.05 in group 2, resulting in an overall increase by 0.08±0.08 in the DDD-CLS mode (p=0.13). Conclusion First results of the evaluation of the effectiveness of CLS in CRT patients with severe CI revealed that CLS generated an overall positive effect on well-established surrogate parameters for prognosis. About one half of the patients showed CLS response in terms of improved VE slope. In addition, CLS improved quality of life. Further clinical research is needed to identify predictors that can increase the responder rate and to confirm improvement in clinical outcomes. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Biotronik SE & Co. KG


2021 ◽  
Vol 13 (15) ◽  
pp. 2868
Author(s):  
Yonglin Tian ◽  
Xiao Wang ◽  
Yu Shen ◽  
Zhongzheng Guo ◽  
Zilei Wang ◽  
...  

Three-dimensional information perception from point clouds is of vital importance for improving the ability of machines to understand the world, especially for autonomous driving and unmanned aerial vehicles. Data annotation for point clouds is one of the most challenging and costly tasks. In this paper, we propose a closed-loop and virtual–real interactive point cloud generation and model-upgrading framework called Parallel Point Clouds (PPCs). To our best knowledge, this is the first time that the training model has been changed from an open-loop to a closed-loop mechanism. The feedback from the evaluation results is used to update the training dataset, benefiting from the flexibility of artificial scenes. Under the framework, a point-based LiDAR simulation model is proposed, which greatly simplifies the scanning operation. Besides, a group-based placing method is put forward to integrate hybrid point clouds, via locating candidate positions for virtual objects in real scenes. Taking advantage of the CAD models and mobile LiDAR devices, two hybrid point cloud datasets, i.e., ShapeKITTI and MobilePointClouds, are built for 3D detection tasks. With almost zero labor cost on data annotation for newly added objects, the models (PointPillars) trained with ShapeKITTI and MobilePointClouds achieved 78.6% and 60.0% of the average precision of the model trained with real data on 3D detection, respectively.


2020 ◽  
Vol 11 (1) ◽  
pp. 177
Author(s):  
Pasi Fränti ◽  
Teemu Nenonen ◽  
Mingchuan Yuan

Travelling salesman problem (TSP) has been widely studied for the classical closed loop variant but less attention has been paid to the open loop variant. Open loop solution has property of being also a spanning tree, although not necessarily the minimum spanning tree (MST). In this paper, we present a simple branch elimination algorithm that removes the branches from MST by cutting one link and then reconnecting the resulting subtrees via selected leaf nodes. The number of iterations equals to the number of branches (b) in the MST. Typically, b << n where n is the number of nodes. With O-Mopsi and Dots datasets, the algorithm reaches gap of 1.69% and 0.61 %, respectively. The algorithm is suitable especially for educational purposes by showing the connection between MST and TSP, but it can also serve as a quick approximation for more complex metaheuristics whose efficiency relies on quality of the initial solution.


Sign in / Sign up

Export Citation Format

Share Document