scholarly journals Development of a climate record of tropospheric and stratospheric ozone from satellite remote sensing: evidence of an early recovery of global stratospheric ozone

2012 ◽  
Vol 12 (1) ◽  
pp. 3169-3211
Author(s):  
J. R. Ziemke ◽  
S. Chandra

Abstract. Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010) long record of tropospheric and stratospheric ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. The analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The stratospheric ozone record indicates a steady increase since the mid-1990's with current ozone levels comparable to the mid-1980's. This is earlier than predicted by many of the current climate models which suggest recovery to the mid-1980's levels by year 2020 or later.

2012 ◽  
Vol 12 (13) ◽  
pp. 5737-5753 ◽  
Author(s):  
J. R. Ziemke ◽  
S. Chandra

Abstract. Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979–2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30–40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.


2010 ◽  
Vol 10 (4) ◽  
pp. 9153-9171 ◽  
Author(s):  
A. Hauchecorne ◽  
J. L. Bertaux ◽  
F. Dalaudier ◽  
P. Keckhut ◽  
P. Lemennais ◽  
...  

Abstract. The stellar occultation spectrometer GOMOS (Global Ozone Monitoring by Occultation of Stars) on ESA's Envisat satellite measures vertical profiles O3, NO2 and NO3 with a high long-term stability due to the self-calibrating nature of the technique. More than 6 years of GOMOS data from August 2002 to end 2008 have been analysed to study the inter-annual variation of O3, NO2 and NO3 in the tropics. It is shown that the QBO of the equatorial wind induces variations in the local concentration larger than 10% for O3 and larger than 25% for NO2. Quasi-Biennial Oscillation signals can be found in the evolution of the three constituents up to at least 45 km. We found that NO3 is positively correlated with temperature up to 40 km in the region where it is in chemical equilibrium with O3. Above 40 km, NO3 is no more in equilibrium during night and its concentration is correlated with both O3 and NO2. For O3 and NO2, our results confirm the existence of a transition from a dynamical control of O3 below 28 km with O3 correlated with NO2 and temperature and a chemical/temperature control between 28 and 38 km with O3 anti-correlated with NO2 and temperature. Above 38 km and up to 50 km a regime never described before is found with both O3 and NO2 anti-correlated with temperature. For the NO2/temperature anti-correlation, our proposed explanation is the modulation of the N2O ascent in the upper stratosphere by the QBO and the modulation of the Brewer-Dobson circulation. The oxidation of N2O is the main source of NOy in this altitude region. An enhancement of the ascending motion will cool adiabatically the atmosphere and will increase the amount of N2O concentration available for NOy formation.


2010 ◽  
Vol 10 (18) ◽  
pp. 8873-8879 ◽  
Author(s):  
A. Hauchecorne ◽  
J. L. Bertaux ◽  
F. Dalaudier ◽  
P. Keckhut ◽  
P. Lemennais ◽  
...  

Abstract. The stellar occultation spectrometer GOMOS (Global Ozone Monitoring by Occultation of Stars) on ESA's Envisat satellite measures vertical profiles O3, NO2 and NO3 with a high long-term stability due to the self-calibrating nature of the technique. More than 6 years of GOMOS data from August 2002 to end 2008 have been analysed to study the inter-annual variation of O3, NO2 and NO3 in the tropics. It is shown that the QBO of the equatorial wind induces variations in the local concentration larger than 10% for O3 and larger than 25% for NO2. Quasi-Biennial Oscillation signals can be found in the evolution of the three constituents up to at least 40 km. We found that NO3 is positively correlated with temperature up to 45 km in the region where it is in chemical equilibrium with O3. Our results confirm the existence of a transition from a dynamical control of O3 below 28 km with O3 correlated with temperature and a chemical/temperature control between 28 and 38 km with O3 anti-correlated with NO2 and temperature. Above 38 km and up to 50 km a different regime is found with O3 and NO2 correlated with each other and anti-correlated with temperature. For the NO2/temperature anti-correlation in the upper stratosphere, our proposed explanation is the modulation of the N2O ascent by the QBO up to 45 km. The oxidation of N2O is the main source of NOy in this altitude region. An enhancement of the ascending motion will cool adiabatically the atmosphere and will increase the amount of N2O concentration available for NOy formation.


2013 ◽  
Vol 13 (4) ◽  
pp. 11269-11313 ◽  
Author(s):  
C. Gebhardt ◽  
A. Rozanov ◽  
R. Hommel ◽  
M. Weber ◽  
H. Bovensmann ◽  
...  

Abstract. Vertical profiles of the rate of linear change (trend) in the altitude range 15–50 km are determined from decadal O3 time series obtained from SCIAMACHY/ENVISAT measurements in limb viewing geometry. The trends are calculated by using a multivariate linear regression in the zonal bands 5° S–5° N (tropics), 50–60° N, and 50–60° S (mid- to high latitudes). Seasonal terms, the quasi-biennial oscillation, and solar cycle variations are accounted for in the regression. In the tropics, positive trends between 15 and 30 km and negative trends between 30 and 35 km are identified. Moderately positive O3 trends are found in the upper stratosphere of the tropics and midlatitudes. The explanation favoured for the observed positive and negative trends in the tropical lower and middle stratosphere is NOx chemistry. Comparisons between SCIAMACHY and EOS MLS in the tropics and at midlatitudes show good agreement. In the tropics, measurements from OSIRIS/Odin and SHADOZ are analysed resulting in very similar vertical profiles of the rate of linear change of O3. Observed trends in the stratospheric column derived from integrated SCIAMACHY limb O3 profiles and nadir total columns are found to be consistent.


2014 ◽  
Vol 14 (6) ◽  
pp. 7113-7140 ◽  
Author(s):  
A. E. Bourassa ◽  
D. A. Degenstein ◽  
W. J. Randel ◽  
J. M. Zawodny ◽  
E. Kyrölä ◽  
...  

Abstract. Stratospheric ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II satellite instrument (1984–2005) are combined with those from the Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite (2001–Present) to quantify interannual variability and decadal trends in stratospheric ozone between 60° S and 60° N. These data are merged into a multi-instrument, long-term stratospheric ozone record (1984–present) by analyzing the measurements during the overlap period of 2002–2005 when both satellite instruments were operational. The variability in the deseasonalized time series is fit using multiple linear regression with predictor basis functions including the quasi-biennial oscillation, El Niño-Southern Oscillation index, solar activity proxy, and the pressure at the tropical tropopause, in addition to two linear trends (one before and one after 1997), from which the decadal trends in ozone are derived. From 1984–1997, there are statistically significant negative trends of 5–10% per decade throughout the stratosphere between approximately 30–50 km. From 1997–present, a statistically significant recovery of 3–8% per decade has taken place throughout most of the stratosphere with the notable exception between 40° S–40° N below approximately 22 km where the negative trend continues. The recovery is not significant between 25–35 km altitude when accounting for a conservative estimate of instrument drift.


2014 ◽  
Vol 14 (13) ◽  
pp. 6983-6994 ◽  
Author(s):  
A. E. Bourassa ◽  
D. A. Degenstein ◽  
W. J. Randel ◽  
J. M. Zawodny ◽  
E. Kyrölä ◽  
...  

Abstract. Stratospheric ozone profile measurements from the Stratospheric Aerosol and Gas Experiment~(SAGE) II satellite instrument (1984–2005) are combined with those from the Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite (2001–Present) to quantify interannual variability and decadal trends in stratospheric ozone between 60° S and 60° N. These data are merged into a multi-instrument, long-term stratospheric ozone record (1984–present) by analyzing the measurements during the overlap period of 2002–2005 when both satellite instruments were operational. The variability in the deseasonalized time series is fit using multiple linear regression with predictor basis functions including the quasi-biennial oscillation, El Niño–Southern Oscillation index, solar activity proxy, and the pressure at the tropical tropopause, in addition to two linear trends (one before and one after 1997), from which the decadal trends in ozone are derived. From 1984 to 1997, there are statistically significant negative trends of 5–10% per decade throughout the stratosphere between approximately 30 and 50 km. From 1997 to present, a statistically significant recovery of 3–8% per decade has taken place throughout most of the stratosphere with the notable exception between 40° S and 40° N below approximately 22 km where the negative trend continues. The recovery is not significant between 25 and 35 km altitudes when accounting for a conservative estimate of instrument drift.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2012 ◽  
Vol 12 (11) ◽  
pp. 30825-30867
Author(s):  
G. Kirgis ◽  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. The Jet Propulsion Laboratory (JPL) lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W) and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W), have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalized monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11-yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen–Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude ozone depleting gas index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne stratospheric aerosol and gas experiment II, halogen occultation experiment, and Aura-microwave limb sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the ozone depleting gas index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11-yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.


2013 ◽  
Vol 13 (9) ◽  
pp. 4563-4575 ◽  
Author(s):  
T. Flury ◽  
D. L. Wu ◽  
W. G. Read

Abstract. We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer–Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, ~18.8 km and 56 hPa, ~19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (~16.6 km) level by correlating the H2O time series at the Equator with the ones at 40° N and 40° S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15 m s−1 at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10%. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2 mm s−1.


Sign in / Sign up

Export Citation Format

Share Document