scholarly journals Balloon-borne match measurements of mid-latitude cirrus clouds

2013 ◽  
Vol 13 (10) ◽  
pp. 25417-25479 ◽  
Author(s):  
A. Cirisan ◽  
B. P. Luo ◽  
I. Engel ◽  
F. G. Wienhold ◽  
U. K. Krieger ◽  
...  

Abstract. Observations of persistent high supersaturations with respect to ice inside cirrus clouds are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. Single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information of the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer "SnowWhite" and a particle backscatter detector "COBALD" (Compact Optical Backscatter Aerosol Detector). Extensive trajectory calculations based on regional weather model COSMO forecasts are performed for flight planning and COSMO analyses are used as basis for comprehensive microphysical box modeling (with grid scale 2 km and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear sky or cloudy sky conditions, highlighting the importance of a proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive, 4-km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the extreme humidity conditions in the upper troposphere.

2014 ◽  
Vol 14 (14) ◽  
pp. 7341-7365 ◽  
Author(s):  
A. Cirisan ◽  
B. P. Luo ◽  
I. Engel ◽  
F. G. Wienhold ◽  
M. Sprenger ◽  
...  

Abstract. Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg−1) and high crystal number densities (> 1 cm−3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear-sky or cloudy-sky conditions, highlighting the importance of proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive 4 km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed-phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the special humidity conditions in the upper troposphere.


2012 ◽  
Vol 12 (4) ◽  
pp. 9553-9586
Author(s):  
M. Brabec ◽  
F. G. Wienhold ◽  
B. Luo ◽  
H. Vömel ◽  
F. Immler ◽  
...  

Abstract. Advanced measurement and modelling techniques are employed to determine the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector) was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer) from Lindenberg, Germany (52° N, 14° E). The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields) fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields) capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2–10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the NWP models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics.


2005 ◽  
Vol 62 (7) ◽  
pp. 2568-2579 ◽  
Author(s):  
C. R. Hoyle ◽  
B. P. Luo ◽  
T. Peter

Abstract Recent measurements with four independent particle instruments in cirrus clouds, which formed without convective or orographic influence, report high number densities of ice particles (as high as nice = 50 cm−3) embedded in broad density distributions (nice = 0.1–50 cm−3). It is shown here that small-scale temperature fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions are required to explain these observations. These waves have typical peak-to-peak amplitudes of 1–2 K and frequencies of up to 10 h−1, corresponding to instantaneous cooling rates of up to 60 K h−1. Such waves remain unresolved in even the most advanced state-of-the-art global atmospheric models. Given the ubiquitous nature of these fluctuations, it is suggested that the character of young in situ forming cirrus clouds is mostly determined by homogeneous freezing of ice in solution droplets, driven by a broad range of small-scale fluctuations (period ∼a few minutes) with moderate to high cooling rates (1–100 K h−1).


1986 ◽  
Vol 108 (3) ◽  
pp. 246-250 ◽  
Author(s):  
J. W. Baish ◽  
P. S. Ayyaswamy ◽  
K. R. Foster

We develop analytical expressions (scaling laws) for the local temperature fluctuations near isolated and countercurrent blood vessels during hyperthermia. These scaling laws relate the magnitude of such fluctuations to the size of the heated region and to the thermal equilibration length of the vessels. A new equilibration length is identified for countercurrent vessels. Significant temperature differences are predicted between the vessels and the immediately adjacent tissue when the equilibration length is comparable to or longer than the size of the heated tissue region. Countercurrent vessels are shown to have shorter equilibration lengths and produce smaller temperature fluctuations than isolated vessels of the same size.


2014 ◽  
Vol 10 (S306) ◽  
pp. 54-56
Author(s):  
Simone Aiola ◽  
Arthur Kosowsky ◽  
Bingjie Wang

AbstractThe integrated Sachs-Wolfe effect was recently detected at a level of 4.4σ by [Granett et al. (2008)], by stacking compensated CMB temperature patches corresponding to superstructures in the universe. We test the reported signal using realistic gaussian random realizations of the CMB sky, based on the temperature power spectrum predicted by the concordance ΛCDM model. Such simulations provide a complementary approach to the largely used N-body simulations and allow to include the contaminant effects due to small-scale temperature fluctuations. We also apply our pipeline to foreground-cleaned CMB sky maps using the [Granett et al. (2008)] voids/clusters catalog. We confirm the detection of a signal, which depart from the null hypothesis by 3.5σ, and we report a tension with our theoretical estimates at a significance of about 2.5σ.


2001 ◽  
Vol 448 ◽  
pp. 279-288 ◽  
Author(s):  
SUSAN KURIEN ◽  
KONSTANTINOS G. AIVALIS ◽  
KATEPALLI R. SREENIVASAN

The anisotropy of small-scale temperature fluctuations in shear flows is analysed by making measurements in high-Reynolds-number atmospheric surface layers. A spherical harmonics representation of the moments of scalar increments is proposed, such that the isotropic part corresponds to the index j = 0 and increasing degrees of anisotropy correspond to increasing j. The parity and angular dependence of the odd moments of the scalar increments show that the moments cannot contain any isotropic part (j = 0), but can be satisfactorily represented by the lowest-order anisotropic term corresponding to j = 1. Thus, the skewnesses of scalar increments (and derivatives) are inherently anisotropic quantities, and are not suitable indicators of the tendency towards isotropy.


1978 ◽  
Vol 49 (10) ◽  
pp. 1432-1434 ◽  
Author(s):  
G. E. Schacher ◽  
C. W. Fairall

2009 ◽  
Vol 9 (2) ◽  
pp. 707-719 ◽  
Author(s):  
P. Spichtinger ◽  
K. M. Gierens

Abstract. A recently developed and validated bulk microphysics scheme for modelling cirrus clouds (Spichtinger and Gierens, 2009), implemented into the anelastic non-hydrostatic model EULAG is used for investigation of the impact of dynamics on the evolution of an arctic cirrostratus. Sensitivity studies are performed, using variation of large-scale updraughts as well as addition of small-scale temperature fluctuations and wind shear. The results show the importance of sedimentation of ice crystals on cloud evolution. Due to non-linear processes like homogeneous nucleation situations can arise where small changes in the outer parameters have large effects on the resulting cloud structure. In-cloud ice supersaturation is a common feature of all our simulations, and we show that dynamics is as least as important for its appearance than is microphysics.


Icarus ◽  
2012 ◽  
Vol 221 (2) ◽  
pp. 471-480 ◽  
Author(s):  
S. Tellmann ◽  
B. Häusler ◽  
D.P. Hinson ◽  
G.L. Tyler ◽  
T.P. Andert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document