scholarly journals Impacts of fire emissions and transport pathways on the interannual variation of CO in the tropical upper troposphere

2013 ◽  
Vol 13 (10) ◽  
pp. 25567-25615
Author(s):  
L. Huang ◽  
R. Fu ◽  
J. H. Jiang

Abstract. Carbon monoxide (CO) is an important tracer to study the transport of fire-generated pollutants from the surface to the upper troposphere (UT). This study analyzed the relative importance of fire emission, convection and climate conditions on the interannual variation of CO in the tropical UT, by using satellite observations, reanalysis data and transport pathway auto-identification method developed in our previous study. Empirical orthogonal function (EOF) and singular value decomposition (SVD) methods are used to identify the dominant modes of CO interannual variation in the tropical UT and factors that are related to these modes. Results show that the leading EOF mode is dominated by CO anomalies over Indonesia related to El Niño-Southern Oscillation (ENSO). This is consistent with previous findings by directly evaluating CO anomaly field. Transport pathway analysis suggests that the differences of UT CO between different ENSO types over the tropical continents are mainly dominated by the "local convection" pathway, especially the average CO transported by this pathway. The relative frequency of the "advection within the lower troposphere (LT) followed by convective vertical transport" pathway appears to be responsible only for the UT CO differences over the west-central Pacific between El Niño and La Niña years.

2014 ◽  
Vol 14 (8) ◽  
pp. 4087-4099 ◽  
Author(s):  
L. Huang ◽  
R. Fu ◽  
J. H. Jiang

Abstract. This study investigates the impacts of fire emission, convection, various climate conditions and transport pathways on the interannual variation of carbon monoxide (CO) in the tropical upper troposphere (UT), by evaluating the field correlation between these fields using multi-satellite observations and principle component analysis, and the transport pathway auto-identification method developed in our previous study. The rotated empirical orthogonal function (REOF) and singular value decomposition (SVD) methods are used to identify the dominant modes of CO interannual variation in the tropical UT and to study the coupled relationship between UT CO and its governing factors. Both REOF and SVD results confirm that Indonesia is the most significant land region that affects the interannual variation of CO in the tropical UT, and El Niño–Southern Oscillation (ENSO) is the dominant climate condition that affects the relationships between surface CO emission, convection and UT CO. In addition, our results also show that the impact of El Niño on the anomalous CO pattern in the tropical UT varies strongly, primarily due to different anomalous emission and convection patterns associated with different El Niño events. In contrast, the anomalous CO pattern in the tropical UT during La Niña period appears to be less variable among different events. Transport pathway analysis suggests that the average CO transported by the "local convection" pathway (ΔCOlocal) accounts for the differences of UT CO between different ENSO phases over the tropical continents during biomass burning season. ΔCOlocal is generally higher over Indonesia–Australia and lower over South America during El Niño years than during La Niña years. The other pathway ("advection within the lower troposphere followed by convective vertical transport") occurs more frequently over the west-central Pacific during El Niño years than during La Niña years, which may account for the UT CO differences over this region between different ENSO phases.


2007 ◽  
Vol 135 (10) ◽  
pp. 3346-3361 ◽  
Author(s):  
Ayako Seiki ◽  
Yukari N. Takayabu

Abstract The mechanism of synoptic-scale eddy development in the generation of westerly wind bursts (WWBs) over the western–central Pacific, and their relationship with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO), were examined. In the WWB occurrences, barotropic structures of equatorial eddy westerlies with cyclonic disturbances were found from the surface to the upper troposphere. The dominant contributions to substantial eddy kinetic energy (EKE) were the barotropic energy conversion (KmKe) in the lower and middle tropospheres and the conversion from eddy available potential energy (PeKe) in the upper troposphere. Low-frequency environmental westerlies centered near the equator preceded strong zonal convergence and meridional shear, resulting in the substantial KmKe. The activation of synoptic convection also contributed to an increase in EKE through PeKe. These energies were redistributed to the lower-equatorial troposphere through energy flux convergence (GKe). These results showed that environmental fields contribute to the EKE increase near the equator and are important factors in WWB occurrences. Next, eddy growth was compared under different phases of MJO and ENSO. The MJO westerly phases of strong MJO events were classified into two groups, in terms of ENSO phases. Higher EKE values were found over the equatorial central Pacific in the WWB–ENSO correlated (pre–El Niño) periods. The energetics during these periods comported with those of the WWB generations. In the uncorrelated periods, the enhancement of eddy disturbances occurred far from the equator near the Philippines, where the activities of the easterly wave disturbances are well known. It is noteworthy that the enhanced region of the disturbances in the pre–El Niño periods coincided with the vicinity of large-scale MJO convection. It is suggested that coincidence corresponds with an enhancement of the internal disturbances embedded in the MJO, which is found only when the environmental conditions are favorable in association with ENSO.


2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


2019 ◽  
Author(s):  
Matthew J. Rowlinson ◽  
Alexandru Rap ◽  
Stephen R. Arnold ◽  
Richard J. Pope ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. The growth rate of global methane (CH4) concentrations has a strong interannual variability which is believed to be driven largely by fluctuations in CH4 emissions from wetlands and wildfires, as well as changes to the atmospheric sink. The El Niño Southern Oscillation (ENSO) is known to influence fire occurrence, wetland emission and atmospheric transport, but there are still important uncertainties associated with the exact mechanism and magnitude of this influence. Here we use a modelling approach to investigate how fires and meteorology control the interannual variability of global carbon monoxide (CO), CH4 and ozone (O3) concentrations, particularly during large El Niño events. Using a three-dimensional chemical transport model (TOMCAT) coupled to a sophisticated aerosol microphysics scheme (GLOMAP) we simulate changes to CO, hydroxyl radical (OH) and O3 for the period 1997–2014. We then use an offline radiative transfer model to quantify the impact of changes to atmospheric composition as a result of specific drivers. During the El Niño event of 1997–1998, there were increased emissions from biomass burning globally. As a result, global CO concentrations increased by more than 40 %. This resulted in decreased global mass-weighted tropospheric OH concentrations of up to 9 % and a resulting 4 % increase in the CH4 atmospheric lifetime. The change in CH4 lifetime led to a 7.5 ppb yr−1 increase in global mean CH4 growth rate in 1998. Therefore biomass burning emission of CO could account for 72 % of the total effect of fire emissions on CH4 growth rate in 1998. Our simulations indicate variations in fire emissions and meteorology associated with El Niño have opposing impacts on tropospheric O3 burden. El Niño-related atmospheric transport changes decrease global tropospheric O3 concentrations leading to a −0.03 Wm−2 change in O3 radiative effect (RE). However, enhanced fire emission of precursors such as nitrous oxides (NOx) and CO increase O3 RE by 0.03 Wm−2. While globally the two mechanisms nearly cancel out, causing only a small change in global mean O3 RE, the regional changes are large   up to −0.33 Wm−2 with potentially important consequences for atmospheric heating and dynamics.


2013 ◽  
Vol 26 (19) ◽  
pp. 7720-7733 ◽  
Author(s):  
Philip J. Klotzbach ◽  
Eric S. Blake

Abstract Both El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) have been documented in previous research to impact tropical cyclone (TC) activity around the globe. This study examines the relationship of each mode individually along with a combined index on tropical cyclone activity in the north-central Pacific. Approximately twice as many tropical cyclones form in the north-central Pacific in El Niño years compared with La Niña years. These differences are attributed to a variety of factors, including warmer sea surface temperatures, lower sea level pressures, increased midlevel moisture, and anomalous midlevel ascent in El Niño years. When the convectively enhanced phase of the MJO is located over the eastern and central tropical Pacific, the north-central Pacific tends to have more tropical cyclone activity, likely because of reduced vertical wind shear, lower sea level pressures, and increased vertical motion. The convectively enhanced phase of the MJO is also responsible for most of the TCs that undergo rapid intensification in the north-central Pacific. A combined MJO–ENSO index that is primarily associated with anomalous rising motion over the tropical eastern Pacific has an even stronger relationship with north-central Pacific TCs, as well as rapid intensification, than either individually.


2019 ◽  
Vol 32 (19) ◽  
pp. 6423-6443 ◽  
Author(s):  
Tao Lian ◽  
Jun Ying ◽  
Hong-Li Ren ◽  
Chan Zhang ◽  
Ting Liu ◽  
...  

AbstractNumerous studies have investigated the role of El Niño–Southern Oscillation (ENSO) in modulating the activity of tropical cyclones (TCs) in the western Pacific on interannual time scales, but the effects of TCs on ENSO are less discussed. Some studies have found that TCs sharply increase surface westerly anomalies over the equatorial western–central Pacific and maintain them there for a few days. Given the strong influence of equatorial surface westerly wind bursts on ENSO, as confirmed by much recent literature, the effects of TCs on ENSO may be much greater than previously expected. Using recently released observations and reanalysis datasets, it is found that the majority of near-equatorial TCs (simply TCs hereafter) are associated with strong westerly anomalies at the equator, and the number and longitude of TCs are significantly correlated with ENSO strength. When TC-related wind stresses are added into an intermediate coupled model, the simulated ENSO becomes more irregular, and both ENSO magnitude and skewness approach those of observations, as compared with simulations without TCs. Adding TCs into the model system does not break the linkage between the heat content anomaly and subsequent ENSO event in the model, which manifest the classic recharge–discharge ENSO dynamics. However, the influence of TCs on ENSO is so strong that ENSO magnitude and sometimes its final state—that is, either El Niño or La Niña—largely depend on the number and timing of TCs during the event year. Our findings suggest that TCs play a prominent role in ENSO dynamics, and their effects must be considered in ENSO forecast models.


2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2017 ◽  
Vol 23 (11) ◽  
pp. 4706-4716 ◽  
Author(s):  
Qiuan Zhu ◽  
Changhui Peng ◽  
Philippe Ciais ◽  
Hong Jiang ◽  
Jinxun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document