scholarly journals Large mixing ratios of atmospheric nitrous acid (HONO) at Concordia (East Antarctic plateau) in summer: a strong source from surface snow?

2014 ◽  
Vol 14 (8) ◽  
pp. 11749-11785 ◽  
Author(s):  
M. Legrand ◽  
S. Preunkert ◽  
M. Frey ◽  
T. Bartels-Rausch ◽  
A. Kukui ◽  
...  

Abstract. During the austral summer 2011/2012 atmospheric nitrous acid was investigated for the second time at the Concordia site (75°06' S, 123°33' E) located on the East Antarctic plateau by deploying a long path absorption photometer (LOPAP). Hourly mixing ratios of HONO measured in December 2011/January 2012 (35 ± 5.0 pptv) were similar to those measured in December 2010/January 2011 (30.4 ± 3.5 pptv). The large value of the HONO mixing ratio at the remote Concordia site suggests a local source of HONO in addition to weak production from oxidation of NO by the OH radical. Laboratory experiments demonstrate that surface snow removed from Concordia can produce gas phase HONO at mixing ratios half that of NOx mixing ratio produced in the same experiment at typical temperatures encountered at Concordia in summer. Using these lab data and the emission flux of NOx from snow estimated from the vertical gradient of atmospheric concentrations measured during the campaign, a mean diurnal HONO snow emission ranging between 0.5 and 0.8 × 109 molecules cm−2 s−1 is calculated. Model calculations indicate that, in addition to around 1.2 pptv of HONO produced by the NO oxidation, these HONO snow emissions can only explain 6.5 to 10.5 pptv of HONO in the atmosphere at Concordia. To explain the difference between observed and simulated HONO mixing ratios, tests were done both in the field and at lab to explore the possibility that the presence of HNO4 had biased the measurements of HONO.

2014 ◽  
Vol 14 (18) ◽  
pp. 9963-9976 ◽  
Author(s):  
M. Legrand ◽  
S. Preunkert ◽  
M. Frey ◽  
Th. Bartels-Rausch ◽  
A. Kukui ◽  
...  

Abstract. During the austral summer 2011/2012 atmospheric nitrous acid (HONO) was investigated for the second time at the Concordia site (75°06' S, 123°33' E), located on the East Antarctic Plateau, by deploying a long-path absorption photometer (LOPAP). Hourly mixing ratios of HONO measured in December 2011/January 2012 (35 ± 5.0 pptv) were similar to those measured in December 2010/January 2011 (30.4 ± 3.5 pptv). The large value of the HONO mixing ratio at the remote Concordia site suggests a local source of HONO in addition to weak production from oxidation of NO by the OH radical. Laboratory experiments demonstrate that surface snow removed from Concordia can produce gas-phase HONO at mixing ratios half that of the NOx mixing ratio produced in the same experiment at typical temperatures encountered at Concordia in summer. Using these lab data and the emission flux of NOx from snow estimated from the vertical gradient of atmospheric concentrations measured during the campaign, a mean diurnal HONO snow emission ranging between 0.5 and 0.8 × 109 molecules cm−2 s−1 is calculated. Model calculations indicate that, in addition to around 1.2 pptv of HONO produced by the NO oxidation, these HONO snow emissions can only explain 6.5 to 10.5 pptv of HONO in the atmosphere at Concordia. To explain the difference between observed and simulated HONO mixing ratios, tests were done both in the field and at lab to explore the possibility that the presence of HNO4 had biased the measurements of HONO.


2009 ◽  
Vol 2 (4) ◽  
pp. 2027-2054 ◽  
Author(s):  
R. Häseler ◽  
T. Brauers ◽  
F. Holland ◽  
A. Wahner

Abstract. The LOPAP (long path absorption) technique has been shown to be very sensitive for the detection of nitrous acid (HONO) in the atmosphere. However, current instruments were mainly built for ground based applications. Therefore, we designed a new LOPAP instrument to be more versatile for mobile measurements and to meet the requirements for airborne application. The detection limit of the new instrument is below 1 ppt at a time resolution of 5 to 7 min. As a first test, the instrument was successfully employed during the ZEPTER-1 campaign in July 2007 on board of the Zeppelin NT airship. During 15 flights on six days we measured HONO concentration profiles over southwest Germany, predominantly in the range between 100 m and 650 m above ground level. On average, a mixing ratio of 34 ppt was observed, almost independently of height. Within a econd campaign, ZEPTER-2 in fall 2008, higher HONO mixing ratios were observed in the Lake Constance area.


2012 ◽  
Vol 5 (5) ◽  
pp. 7641-7673 ◽  
Author(s):  
R. Sinreich ◽  
A. Merten ◽  
L. Molina ◽  
R. Volkamer

Abstract. We present a novel parameterization method to convert Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) differential Slant Column Densities (dSCDs) into near-surface box averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, does not require a-priori assumptions about the trace gas vertical distribution and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006) measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3°) are compared to volume mixing ratios measured by two long-path (LP)-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by MAX-DOAS measurements at different elevation angles, and by LP-DOAS. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near surface emission. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way and emphasizes the need of vertically resolved measurements.


2020 ◽  
Vol 14 (11) ◽  
pp. 3663-3685
Author(s):  
Alexander H. Weinhart ◽  
Johannes Freitag ◽  
Maria Hörhold ◽  
Sepp Kipfstuhl ◽  
Olaf Eisen

Abstract. Surface mass balances of polar ice sheets are essential to estimate the contribution of ice sheets to sea level rise. Uncertain snow and firn densities lead to significant uncertainties in surface mass balances, especially in the interior regions of the ice sheets, such as the East Antarctic Plateau (EAP). Robust field measurements of surface snow density are sparse and challenging due to local noise. Here, we present a snow density dataset from an overland traverse in austral summer 2016/17 on the Dronning Maud Land plateau. The sampling strategy using 1 m carbon fiber tubes covered various spatial scales, as well as a high-resolution study in a trench at 79∘ S, 30∘ E. The 1 m snow density has been derived volumetrically, and vertical snow profiles have been measured using a core-scale microfocus X-ray computer tomograph. With an error of less than 2 %, our method provides higher precision than other sampling devices of smaller volume. With four spatially independent snow profiles per location, we reduce the local noise and derive a representative 1 m snow density with an error of the mean of less than 1.5 %. Assessing sampling methods used in previous studies, we find the highest horizontal variability in density in the upper 0.3 m and therefore recommend the 1 m snow density as a robust measure of surface snow density in future studies. The average 1 m snow density across the EAP is 355 kg m−3, which we identify as representative surface snow density between Kohnen Station and Dome Fuji. We cannot detect a temporal trend caused by the temperature increase over the last 2 decades. A difference of more than 10 % to the density of 320 kg m−3 suggested by a semiempirical firn model for the same region indicates the necessity for further calibration of surface snow density parameterizations. Our data provide a solid baseline for tuning the surface snow density parameterizations for regions with low accumulation and low temperatures like the EAP.


2013 ◽  
Vol 6 (6) ◽  
pp. 1521-1532 ◽  
Author(s):  
R. Sinreich ◽  
A. Merten ◽  
L. Molina ◽  
R. Volkamer

Abstract. We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS) differential slant column densities (dSCDs) into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed. The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006) measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3°) are compared to volume mixing ratios measured by two long-path (LP)-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.


2007 ◽  
Vol 4 (5) ◽  
pp. 364 ◽  
Author(s):  
Karin Acker ◽  
Detlev Möller

Environmental context. Nitrous acid (HNO2) is an important source of the hydroxyl radical (OH.), the most important daytime oxidising species that contributes to the formation of ozone as well as of other secondary pollutants in the troposphere. Understanding the sources and sinks of HNO2 is of crucial interest for accurately modelling the chemical composition of the troposphere and predicting future trace gas concentrations. Abstract. Nitrous acid and several other atmospheric components and variables were continuously measured during complex field experiments at seven different suburban and rural sites in Europe. HNO2 is mainly formed by heterogeneous processes and is often accumulated in the nighttime boundary layer. Our results confirm that the photolysis of HNO2 is an important source of the hydroxyl radical, not only in the early morning hours but also throughout the entire day, and is often comparable with the contribution of ozone and formaldehyde photolysis. At all research sites unexpectedly high HNO2 mixing ratios were observed during the daytime (up to several hundred ppt, or pmol mol-1). Moreover, surprisingly, the HNO2 mixing ratio at the three mountain sites often showed a broad maximum or several distinct peaks at midday and lower mixing ratios during the night. Assuming a quickly established photo-equilibrium between the known significant gas phase reactions, only a few ppt HNO2 should be present around noon. The ratio of known sources to sinks indicates a missing daytime HNO2 source of 160-2600 ppt h-1 to make up the balance. Based on these values and on production mechanisms proposed in the literature we hypothesise that the daytime mixing ratio levels may only be explained by a fast electron transfer onto adsorbed NO2.


2018 ◽  
Vol 18 (3) ◽  
pp. 1977-1996 ◽  
Author(s):  
Catalina Tsai ◽  
Max Spolaor ◽  
Santo Fedele Colosimo ◽  
Olga Pikelnaya ◽  
Ross Cheung ◽  
...  

Abstract. Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget and additionally provides a pathway to recycle NOx. Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO2, and O3 on three absorption paths that cover altitude intervals from 2 to 31, 45, and 68 m above ground level (a.g.l.) during the UBWOS 2012 experiment in the Uintah Basin, Utah, USA. Daytime HONO mixing ratios in the 2–31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO2 mixing ratios of 1–2 ppb. HONO surface fluxes at 19 m a.g.l., calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9 ± 0.2)  ×  1010 molec. cm−2 s−1 at noontime. A photostationary state analysis of the HONO budget shows that the surface flux closes the HONO budget, accounting for 63 ± 32 % of the unidentified HONO daytime source throughout the day and 90 ± 30 % near noontime. This is also supported by 1-D chemistry and transport model calculations that include the measured surface flux, thus clearly identifying chemistry at the ground as the missing daytime HONO source in this environment. Comparison between HONO surface flux, solar radiation, NO2 and HNO3 mixing ratios, and results from 1-D model runs suggest that, under high NOx conditions, HONO formation mechanisms related to solar radiation and NO2 mixing ratios, such as photo-enhanced conversion of NO2 on the ground, are most likely the source of daytime HONO. Under moderate to low NO2 conditions, photolysis of HNO3 on the ground seems to be the main source of HONO.


2018 ◽  
Vol 18 (3) ◽  
pp. 1507-1534 ◽  
Author(s):  
Hoi Ga Chan ◽  
Markus M. Frey ◽  
Martin D. King

Abstract. Emissions of nitrogen oxide (NOx  =  NO + NO2) from the photolysis of nitrate (NO3−) in snow affect the oxidising capacity of the lower troposphere especially in remote regions of high latitudes with little pollution. Current air–snow exchange models are limited by poor understanding of processes and often require unphysical tuning parameters. Here, two multiphase models were developed from physically based parameterisations to describe the interaction of nitrate between the surface layer of the snowpack and the overlying atmosphere. The first model is similar to previous approaches and assumes that below a threshold temperature, To, the air–snow grain interface is pure ice and above To a disordered interface (DI) emerges covering the entire grain surface. The second model assumes that air–ice interactions dominate over all temperatures below melting of ice and that any liquid present above the eutectic temperature is concentrated in micropockets. The models are used to predict the nitrate in surface snow constrained by year-round observations of mixing ratios of nitric acid in air at a cold site on the Antarctic Plateau (Dome C; 75°06′ S, 123°33′ E; 3233 m a.s.l.) and at a relatively warm site on the Antarctic coast (Halley; 75°35′ S, 26°39′ E; 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (Cv(RMSE)  =  1.34) but performs poorly at Halley (Cv(RMSE)  =  89.28) while the second model reproduces with good agreement observations at both sites (Cv(RMSE)  =  0.84 at both sites). It is therefore suggested that in winter air–snow interactions of nitrate are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain, similar to Bock et al. (2016). In summer, however, the air–snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total surface snow NO3− concentrations of 75 and 80 % at Dome C and Halley, respectively. It is also found that the liquid volume of the snow grain and air–micropocket partitioning of HNO3 are sensitive to both the total solute concentration of mineral ions within the snow and pH of the snow. The second model provides an alternative method to predict nitrate concentration in the surface snow layer which is applicable over the entire range of environmental conditions typical for Antarctica and forms a basis for a future full 1-D snowpack model as well as parameterisations in regional or global atmospheric chemistry models.


2007 ◽  
Vol 4 (4) ◽  
pp. 242 ◽  
Author(s):  
Karin Acker ◽  
Detlev Möller

Environmental context. Nitrous acid (HNO2) is an important source of the hydroxyl radical (OH•), the most important daytime oxidising species that contributes to the formation of ozone as well as of other secondary pollutants in the troposphere. Understanding the sources and sinks of HNO2 is of crucial interest for accurately modelling the chemical composition of the troposphere and predicting future trace gas concentrations. Abstract. Nitrous acid and several other atmospheric components and variables were continuously measured during complex field experiments at seven different suburban and rural sites in Europe. HNO2 is mainly formed by heterogeneous processes and is often accumulated in the nighttime boundary layer. Our results confirm that the photolysis of HNO2 is an important source of the hydroxyl radical, not only in the early morning hours but also throughout the entire day, and is often comparable with the contribution of ozone and formaldehyde photolysis. At all research sites unexpectedly high HNO2 mixing ratios were observed during the daytime (up to several hundred ppt, or pmol mol–1). Moreover, surprisingly, the HNO2 mixing ratio at the three mountain sites often showed a broad maximum or several distinct peaks at midday and lower mixing ratios during the night. Assuming a quickly established photo-equilibrium between the known significant gas phase reactions, only a few ppt HNO2 should be present around noon. The ratio of known sources to sinks indicates a missing daytime HNO2 source of 160–2600 ppt h–1 to make up the balance. Based on these values and on production mechanisms proposed in the literature we hypothesise that the daytime mixing ratio levels may only be explained by a fast electron transfer onto adsorbed NO2.


2017 ◽  
Author(s):  
Catalina Tsai ◽  
Max Spolaor ◽  
Santo Fedele Colosimo ◽  
Olga Pikelnaya ◽  
Ross Cheung ◽  
...  

Abstract. Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget, and additionally provides a pathway to recycle NOx. Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO2, and O3 on three absorption paths that cover altitude intervals from 2 m to 31 m, 45 m, and 68 m agl during the UBWOS 2012 experiment in the Uintah Basin, Utah, USA. Daytime HONO mixing ratios in the 2–31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO2 mixing ratios of 1–2 ppb. HONO surface fluxes at 16 m agl, calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9 ± 0.2) x 1010 molec. cm−2 s−1 at noontime. A photo-stationary state analysis of the HONO budget shows that the surface flux closes the HONO budget, accounting for 63 ± 32 % of the unidentified HONO daytime source throughout the day and 90 ± 30 % near noontime. This is also supported by 1D chemistry and transport model calculations that include the measured surface flux, thus clearly identifying chemistry at the ground as the missing daytime HONO source in this environment. Comparison between HONO surface flux, solar radiation, NO2 and HNO3 mixing ratios and results from 1D model runs suggest that, under high NOx conditions, HONO formation mechanisms related to solar radiation and NO2 mixing ratios, such as photo-enhanced conversion of NO2 on the ground, are most likely the source of daytime HONO. Under moderate to low NO2 conditions, photolysis of HNO3 on the ground seems to be the main source of HONO.


Sign in / Sign up

Export Citation Format

Share Document