scholarly journals Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations

2014 ◽  
Vol 14 (8) ◽  
pp. 11815-11853 ◽  
Author(s):  
W. Frey ◽  
S. Borrmann ◽  
F. Fierli ◽  
R. Weigel ◽  
V. Mitev ◽  
...  

Abstract. The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km) though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible cirrus formation, and with this the amount of water vapour that is transported into the stratosphere.

2014 ◽  
Vol 14 (23) ◽  
pp. 13223-13240 ◽  
Author(s):  
W. Frey ◽  
S. Borrmann ◽  
F. Fierli ◽  
R. Weigel ◽  
V. Mitev ◽  
...  

Abstract. The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at least 6 h. Thus, the anvils of these high-reaching deep convective clouds have a high potential for affecting the tropical tropopause layer by modifying the humidity and radiative budget, as well as for providing favourable conditions for subvisible cirrus formation. The involved processes may also influence the amount of water vapour that ultimately reaches the stratosphere in the tropics.


2015 ◽  
Vol 15 (11) ◽  
pp. 6467-6486 ◽  
Author(s):  
W. Frey ◽  
R. Schofield ◽  
P. Hoor ◽  
D. Kunkel ◽  
F. Ravegnani ◽  
...  

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere, but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.


2008 ◽  
Vol 136 (12) ◽  
pp. 4839-4849 ◽  
Author(s):  
Nicholas A. Engerer ◽  
David J. Stensrud ◽  
Michael C. Coniglio

Abstract Cold pools are a key element in the organization of precipitating convective systems, yet knowledge of their typical surface characteristics is largely anecdotal. To help to alleviate this situation, cold pools from 39 mesoscale convective system (MCS) events are sampled using Oklahoma Mesonet surface observations. In total, 1389 time series of surface observations are used to determine typical rises in surface pressure and decreases in temperature, potential temperature, and equivalent potential temperature associated with the cold pool, and the maximum wind speeds in the cold pool. The data are separated into one of four convective system life cycle stages: first storms, MCS initiation, mature MCS, and MCS dissipation. Results indicate that the mean surface pressure rises associated with cold pools increase from 3.2 hPa for the first storms’ life cycle stage to 4.5 hPa for the mature MCS stage before dropping to 3.3 hPa for the dissipation stage. In contrast, the mean temperature (potential temperature) deficits associated with cold pools decrease from 9.5 (9.8) to 5.4 K (5.6 K) from the first storms to the dissipation stage, with a decrease of approximately 1 K associated with each advance in the life cycle stage. However, the daytime and early evening observations show mean temperature deficits over 11 K. A comparison of these observed cold pool characteristics with results from idealized numerical simulations of MCSs suggests that observed cold pools likely are stronger than those found in model simulations, particularly when ice processes are neglected in the microphysics parameterization. The mean deficits in equivalent potential temperature also decrease with the MCS life cycle stage, starting at 21.6 K for first storms and dropping to 13.9 K for dissipation. Mean wind gusts are above 15 m s−1 for all life cycle stages. These results should help numerical modelers to determine whether the cold pools in high-resolution models are in reasonable agreement with the observed characteristics found herein. Thunderstorm simulations and forecasts with thin model layers near the surface are also needed to obtain better representations of cold pool surface characteristics that can be compared with observations.


2017 ◽  
Vol 98 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Eric J. Jensen ◽  
Leonhard Pfister ◽  
David E. Jordan ◽  
Thaopaul V. Bui ◽  
Rei Ueyama ◽  
...  

Abstract The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).


2007 ◽  
Vol 7 (3) ◽  
pp. 6255-6292 ◽  
Author(s):  
R. P. Lawson ◽  
B. Pilson ◽  
B. Baker ◽  
Q. Mo ◽  
E. Jensen ◽  
...  

Abstract. Subvisible cirrus (SVC) clouds are often observed within the tropical tropopause layer (TTL) and have been shown to have a significant impact on the earth radiation budget. The Costa Rica Aura Validation Experiment (CR-AVE) sponsored by the National Aeronautics and Space Administration (NASA) took place near San Jose, Costa Rica from 14 January–15 February 2006. The NASA WB-57F sampled SVC in the TTL from −75°C to −90°C with an improved set of cloud particle probes. The first digital images of ice particles in the TTL are compared with replicator images of ice particles collected in 1973 by a WB-57F in the TTL. The newer measurements reveal larger particles, on the order of 100 μm compared with <50 μm from the earlier measurements, and also different particle shapes. The 1973 particles were mainly columnar and trigonal, whereas the newer measurements are quasi-spherical and hexagonal plates. The WB-57F also measured very high water vapor contents with some instruments, up to 4 ppmv, and aerosols with mixed organics and sulfates. It is unknown whether these ambient conditions were present in the 1973 studies, and whether such conditions have an influence on particle shape and the development of the large particles. A companion paper (Jensen et al., 2007) presents crystal growth calculations that suggest that the high water vapor measurements are required to grow ice particles to the observed sizes of 100 μm and larger.


2009 ◽  
Vol 9 (5) ◽  
pp. 17937-17962
Author(s):  
P. Konopka ◽  
J.-U. Grooß ◽  
G. Günther ◽  
F. Plöger ◽  
R. Pommrich ◽  
...  

Abstract. Multi-annual simulations with the Chemical Model of the Stratosphere (CLaMS) are used to study the seasonality of O3 and of the mean age within the stratospheric part of the tropical tropopause layer (TTL) In agreement with satellite (HALOE) and in-situ observations (SHADOZ), CLaMS simulations show above ≈360 K potential temperature, a pronounced annual cycle in O3 and in the mean age of air with highest values in the late boreal summer. Within the model, this seasonality is driven by the seasonality of both upwelling and in-mixing. The latter process describes enhanced meridional transport from the extratropics into the TTL. The strongest in-mixing occurs from the Northern Hemisphere during the boreal summer in the potential temperature range between 380 and 420 K. Contrary, an increase of upwelling with highest values in winter reduces O3 up to the lowest values in early spring. Both, CLaMS simulations and Aura MLS O3 observations show that this enhanced equatorward transport in summer is mainly driven by the Asian monsoon anticyclone.


2011 ◽  
Vol 11 (1) ◽  
pp. 407-419 ◽  
Author(s):  
F. Ploeger ◽  
S. Fueglistaler ◽  
J.-U. Grooß ◽  
G. Günther ◽  
P. Konopka ◽  
...  

Abstract. We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL), and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE) and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data) are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390 K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.


2010 ◽  
Vol 10 (2) ◽  
pp. 4927-4961 ◽  
Author(s):  
F. Fierli ◽  
E. Orlandi ◽  
K. S. Law ◽  
C. Cagnazzo ◽  
F. Cairo ◽  
...  

Abstract. We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely originated from convective cloud east of the flight. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that in the outflow of a large convective system, deep convection can largely modify chemical composition and aerosol distribution up to the tropical tropopause. Model analysis also shows that, on average, deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition.


2015 ◽  
Vol 15 (1) ◽  
pp. 1041-1091 ◽  
Author(s):  
W. Frey ◽  
R. Schofield ◽  
P. Hoor ◽  
D. Kunkel ◽  
F. Ravegnani ◽  
...  

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection to a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.


2014 ◽  
Vol 71 (2) ◽  
pp. 833-853 ◽  
Author(s):  
Tatsuya Seiki ◽  
Teruyuki Nakajima

Abstract Using a nonhydrostatic model with a double-moment bulk cloud microphysics scheme, the authors introduce an aerosol effect on a convective cloud system by accelerating the condensation and evaporation processes (the aerosol condensational effect). To evaluate this effect, the authors use an explicit condensation scheme rather than the saturation adjustment method and propose a method to isolate the aerosol condensational effect. This study shows that the aerosol condensational effect not only accelerates growth rates but also increases cloud water, even though the degree of the acceleration of evaporation exceeds that of condensation. In the early developing stage of the convective system, increased cloud water is, in turn, linked to ice-phase processes and modifies the ice water path of anvil clouds and the ice cloud fraction. In the mature stage, although the aerosol condensational effect has a secondary role in dynamical feedbacks when combined with other aerosol effects, the degree of modulation of the cloud microphysical parameters by the aerosol condensational effect continues to be nonnegligible. These findings indicate that feedback mechanisms, such as latent heat release and the interaction of various aerosol effects, are important in convective cloud systems that involve ice-phase processes.


Sign in / Sign up

Export Citation Format

Share Document