scholarly journals Influence of mineral dust and sea spray supermicron particle concentrations and acidity on inorganic NO<sub>3</sub><sup>−</sup> aerosol during the 2013 Southern Oxidant and Aerosol Study

2015 ◽  
Vol 15 (9) ◽  
pp. 13827-13865 ◽  
Author(s):  
H. M. Allen ◽  
D. C. Draper ◽  
B. R. Ayres ◽  
A. Ault ◽  
A. Bondy ◽  
...  

Abstract. The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

2015 ◽  
Vol 15 (18) ◽  
pp. 10669-10685 ◽  
Author(s):  
H. M. Allen ◽  
D. C. Draper ◽  
B. R. Ayres ◽  
A. Ault ◽  
A. Bondy ◽  
...  

Abstract. Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. eaax9050
Author(s):  
Steffen Breinlinger ◽  
Tabitha J. Phillips ◽  
Brigette N. Haram ◽  
Jan Mareš ◽  
José A. Martínez Yerena ◽  
...  

Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata. Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola. We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors—especially bromide availability—that promote toxin production.


2016 ◽  
Author(s):  
Sara D. Forestieri ◽  
Gavin C. Cornwell ◽  
Taylor M. Helgestad ◽  
Kathryn A. Moore ◽  
Christopher Lee ◽  
...  

Abstract. The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions, concurrently with online single particle and bulk aerosol composition measurements. During both microcosm experiments, the observed bulk average GF(85 %) values were depressed substantially relative to pure, inorganic sea salt, by 10 to 19 %, with a one (indoor MART) and six (outdoor MART) day lag between GF(85 %) depression and the peak chlorophyll-a concentrations. The fraction of organiccontaining SSA particles generally increased after the peak of the phytoplankton blooms. The GF(85 %) values were inversely correlated with the fraction of particles containing organic or other biological markers. This indicates these particles were less hygroscopic than the particles identified as predominately sea salt containing and demonstrates a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.


2014 ◽  
Vol 7 (6) ◽  
pp. 2557-2579 ◽  
Author(s):  
S. Archer-Nicholls ◽  
D. Lowe ◽  
S. Utembe ◽  
J. Allan ◽  
R. A. Zaveri ◽  
...  

Abstract. We have made a number of developments to the Weather, Research and Forecasting model coupled with Chemistry (WRF-Chem), with the aim of improving model prediction of trace atmospheric gas-phase chemical and aerosol composition, and of interactions between air quality and weather. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been added, using the Kinetic Pre-Processor (KPP) interface, to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas-phase schemes. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. We have worked on the European domain, with a particular focus on making the model suitable for the study of nighttime chemistry and oxidation by the nitrate radical in the UK atmosphere. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments are illustrated, using a modified version of WRF-Chem 3.4.1, in order to demonstrate the impact that these changes have in the Northwest European domain. These developments are publicly available in WRF-Chem from version 3.5.1 onwards.


2017 ◽  
Vol 18 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Chandrasekar (Shaker) S. Kousik ◽  
Pingsheng Ji ◽  
Daniel S. Egel ◽  
Lina M. Quesada-Ocampo

About 50% of the watermelons in the United States are produced in the southeastern states, where optimal conditions for development of Phytophthora fruit rot prevail. Phytophthora fruit rot significantly limits watermelon production by causing serious yield losses before and after fruit harvest. Efficacy of fungicide rotation programs and Melcast-scheduled sprays for managing Phytophthora fruit rot was determined by conducting experiments in Phytophthora capsici-infested fields at three locations in southeastern United States (North Carolina, South Carolina, and Georgia). The mini seedless cultivar Wonder and seeded cultivar Mickey Lee (pollenizer) were used. Five weekly applications of fungicides were made at all locations. Significant fruit rot (53 to 91%, mean 68%) was observed in the nontreated control plots in all three years (2013 to 2015) and across locations. All fungicide rotation programs significantly reduced Phytophthora fruit rot compared with nontreated controls. Overall, the rotation of Zampro alternated with Orondis was highly effective across three locations and two years. Rotations of Actigard followed by Ranman+Ridomil Gold, Presidio, V-10208, and Orondis, or rotation of Revus alternated with Presidio were similarly effective. Use of Melcast, a melon disease-forecasting tool, may occasionally enable savings of one spray application without significantly impacting control. Although many fungicides are available for use in rotations, under very heavy rain and pathogen pressure, the fungicides alone may not offer adequate protection; therefore, an integrated approach should be used with other management options including well-drained fields.


2006 ◽  
Vol 131 (3) ◽  
pp. 345-351 ◽  
Author(s):  
J. Ryan Stewart ◽  
William R. Graves ◽  
Reid D. Landes

Carolina buckthorn [Rhamnus caroliniana Walt. or Frangula caroliniana (Walt.) Gray] is an attractive and water-stress-resistant shrub or small tree distributed extensively in the southeastern United States that merits use in managed landscapes. Due to substantial climatic differences within its distribution (30-year normal midwinter minima range from 13 to -8 °C), selection among provenances based on differences in cold hardiness is warranted. Before selections are marketed, the potential of carolina buckthorn to be invasive also merits investigation. Ecological problems resulting from the introduction of Rhamnus L. species in the United States, most notably the dominance of R. cathartica L. (common buckthorn) over neighboring taxa, are due in part to early budbreak. Consequently, we investigated depth of cold hardiness and vernal budbreak of carolina buckthorn and common buckthorn. Stem samples of carolina buckthorn and common buckthorn collected in midwinter survived temperatures as low as -21 and -24 °C, respectively. Although the cold hardiness of carolina buckthorns from Missouri was greater than that of carolina buckthorns from Ohio and Texas on 2 Apr. 2003, there were no differences in cold hardiness of stems from Missouri and Texas on all three assessment dates in the second experiment. All plants survived at both field locations except for the carolina buckthorns from southern Texas planted in Iowa, which showed 0% and 17% survival in 2003 and 2004, respectively. Budbreak of both species with and without mulch in Ames, Iowa, was recorded from 9 Apr. to 10 May 2002. Mean budbreak of common buckthorn was 5.7 days earlier than budbreak of carolina buckthorn, and buds of mulched carolina buckthorns broke 4.2 days earlier than did buds of unmulched carolina buckthorns. We conclude that the cold hardiness of carolina buckthorn is sufficient to permit the species to be planted outside of its natural distribution. Populations of carolina buckthorn in Ohio and Missouri should be the focus of efforts to select genotypes for use in regions with harsh winters. Phenology of its budbreak suggests carolina buckthorn will not be as invasive as common buckthorn, but evaluation of additional determinants of invasiveness is warranted.


2019 ◽  
Vol 19 (2) ◽  
pp. 1027-1039 ◽  
Author(s):  
Victoria E. Irish ◽  
Sarah J. Hanna ◽  
Megan D. Willis ◽  
Swarup China ◽  
Jennie L. Thomas ◽  
...  

Abstract. Ice nucleating particles (INPs) in the Arctic can influence climate and precipitation in the region; yet our understanding of the concentrations and sources of INPs in this region remain uncertain. In the following, we (1) measured concentrations of INPs in the immersion mode in the Canadian Arctic marine boundary layer during summer 2014 on board the CCGS Amundsen, (2) determined ratios of surface areas of mineral dust aerosol to sea spray aerosol, and (3) investigated the source region of the INPs using particle dispersion modelling. Average concentrations of INPs at −15, −20, and −25 ∘C were 0.005, 0.044, and 0.154 L−1, respectively. These concentrations fall within the range of INP concentrations measured in other marine environments. For the samples investigated the ratio of mineral dust surface area to sea spray surface area ranged from 0.03 to 0.09. Based on these ratios and the ice active surface site densities of mineral dust and sea spray aerosol determined in previous laboratory studies, our results suggest that mineral dust is a more important contributor to the INP population than sea spray aerosol for the samples analysed. Based on particle dispersion modelling, the highest concentrations of INPs were often associated with lower-latitude source regions such as the Hudson Bay area, eastern Greenland, or north-western continental Canada. On the other hand, the lowest concentrations were often associated with regions further north of the sampling sites and over Baffin Bay. A weak correlation was observed between INP concentrations and the time the air mass spent over bare land, and a weak negative correlation was observed between INP concentrations and the time the air mass spent over ice and open water. These combined results suggest that mineral dust from local sources is an important contributor to the INP population in the Canadian Arctic marine boundary layer during summer 2014.


2019 ◽  
Vol 11 (3) ◽  
pp. 549-563 ◽  
Author(s):  
JungKyu Rhys Lim ◽  
Brooke Fisher Liu ◽  
Michael Egnoto

Abstract On average, 75% of tornado warnings in the United States are false alarms. Although forecasters have been concerned that false alarms may generate a complacent public, only a few research studies have examined how the public responds to tornado false alarms. Through four surveys (N = 4162), this study examines how residents in the southeastern United States understand, process, and respond to tornado false alarms. The study then compares social science research findings on perceptions of false alarms to actual county false alarm ratios and the number of tornado warnings issued by counties. Contrary to prior research, findings indicate that concerns about false alarm ratios generating a complacent public may be overblown. Results show that southeastern U.S. residents estimate tornado warnings to be more accurate than they are. Participants’ perceived false alarm ratios are not correlated with actual county false alarm ratios. Counterintuitively, the higher individuals perceive false alarm ratios and tornado alert accuracy to be, the more likely they are to take protective behavior such as sheltering in place in response to tornado warnings. Actual country false alarm ratios and the number of tornado warnings issued did not predict taking protective action.


2020 ◽  
Vol 66 (6) ◽  
pp. 653-665
Author(s):  
Hector I Restrepo ◽  
Bin Mei ◽  
Bronson P Bullock

Abstract Timberland ownership has drastically changed in the United States since the 1980s, driven by the divestitures of vertically integrated forest products companies. Having sold their timberland, forest products companies have exposed themselves more to the risk of raw material supply. To hedge against this risk, forest products companies usually use long-term timber contracts (LTTC). The objective of this article is to update the valuation framework for LTTCs proposed by Shaffer (1984) by including alternative option price models and refining the estimates of some key economic variables. In particular, conditional volatility from the generalized autoregressive conditional heteroscedasticity model and quasi-conditional volatility from rolling estimation windows, in addition to simple standard deviation, are used for the volatility estimates in the option pricing models. Contrary to the previous result by Shaffer (1984), our analysis suggests that LTTCs that were once profitable for forest products companies in the 1980s are no longer so under current market conditions. This is primarily because both timber price volatility and the risk-free interest rates have declined significantly. Thus, to be better off, forest products companies need to either lower the administration and management costs of those LTTCs or rely more on the open market for timber procurement. Study Implications: Forest products companies have traditionally relied on long-term timber contracts (LTTC) negotiated with forest landowners to mitigate the risk of raw material supply. The value of these LTTCs highly depends on the economic context. This research provides some insights into the valuation of LTTCs in the southeastern United States. Forest products companies can use this updated framework to aid their decisionmaking in timber procurement.


Sign in / Sign up

Export Citation Format

Share Document