scholarly journals Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH<sub>3</sub>CHF<sub>2</sub>) from in situ and air archive observations

2015 ◽  
Vol 15 (15) ◽  
pp. 21335-21381
Author(s):  
P. G. Simmonds ◽  
M. Rigby ◽  
A. J. Manning ◽  
M. F. Lunt ◽  
S. O'Doherty ◽  
...  

Abstract. High frequency, ground-based, in situ measurements from eleven globally-distributed sites covering 1994–2014, combined with measurements of archived air samples dating from 1978 onward and atmospheric transport models, have been used to estimate the growth of 1,1-difluoroethane (HFC-152a, CH3CHF2) mole fractions in the atmosphere and the global emissions required to derive the observed growth. HFC-152a is a significant greenhouse gas but since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). HFC-152a has exhibited substantial atmospheric growth since the first measurements reaching a maximum annualised global growth rate of 0.81 ± 0.05 ppt yr−1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annualised rate of growth has slowed to 0.38 ± 0.04 ppt yr−1 in 2010 with a further decline to an average rate of change in 2013–2014 of −0.06 ± 0.05 ppt yr−1. The average Northern Hemisphere (NH) mixing ratio in 1994 was 1.2 ppt rising to a mixing ratio of 10.2 ppt in December 2014. Average annual mixing ratios in the Southern Hemisphere (SH) in 1994 and 2014 were 0.34 and 4.4 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr−1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr−1 in 2011, declining to 52.5 ± 20.1 Gg yr−1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr−1. Analysis of mixing ratio enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia and Europe. Global HFC emissions (so called "bottom up" emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate of "bottom-up" global emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.

2016 ◽  
Vol 16 (1) ◽  
pp. 365-382 ◽  
Author(s):  
P. G. Simmonds ◽  
M. Rigby ◽  
A. J. Manning ◽  
M. F. Lunt ◽  
S. O'Doherty ◽  
...  

Abstract. High frequency, in situ observations from 11 globally distributed sites for the period 1994–2014 and archived air measurements dating from 1978 onward have been used to determine the global growth rate of 1,1-difluoroethane (HFC-152a, CH3CHF2). These observations have been combined with a range of atmospheric transport models to derive global emission estimates in a top-down approach. HFC-152a is a greenhouse gas with a short atmospheric lifetime of about 1.5 years. Since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The concentration of HFC-152a has grown substantially since the first direct measurements in 1994, reaching a maximum annual global growth rate of 0.84 ± 0.05 ppt yr−1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annual rate of growth has slowed to 0.38 ± 0.04 ppt yr−1 in 2010 with a further decline to an annual average rate of growth in 2013–2014 of −0.06 ± 0.05 ppt yr−1. The annual average Northern Hemisphere (NH) mole fraction in 1994 was 1.2 ppt rising to an annual average mole fraction of 10.1 ppt in 2014. Average annual mole fractions in the Southern Hemisphere (SH) in 1998 and 2014 were 0.84 and 4.5 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr−1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr−1 in 2011, declining to 52.5 ± 20.1 Gg yr−1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr−1. Analysis of mole fraction enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia, and Europe. Global HFC emissions (so called “bottom up” emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate ( >  20 Gg) of “bottom-up” reported emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.


2017 ◽  
Author(s):  
Fabian Schoenenberger ◽  
Stephan Henne ◽  
Matthias Hill ◽  
Martin K. Vollmer ◽  
Giorgos Kouvarakis ◽  
...  

Abstract. A wide range of anthropogenic halocarbons is released to the atmosphere, contributing to stratospheric ozone depletion and global warming. Using measurements of atmospheric abundances for the estimation of halocarbon emissions on the global and regional scale has become an important top-down tool for emission validation in the recent past, but many populated and developing areas of the world are only poorly covered by the existing atmospheric halocarbon measurement network. Here we present six months of continuous halocarbon observations from Finokalia on the island of Crete in the Eastern Mediterranean. The gases measured are the hydrofluorocarbons (HFCs), HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-152a (CH3CHF2) and HFC-143a (CH3CF3), and the hydrochlorofluorocarbons (HCFCs), HCFC-22 (CHClF2) and HCFC-142b (CH3CClF2). The Eastern Mediterranean is home to 250 million inhabitants, consisting of a number of developed and developing countries, for which different emission regulations exist under the Kyoto and Montreal Protocols. Regional emissions of halocarbons were estimated with Lagrangian atmospheric transport simulations and a Bayesian inverse modelling system, using measurements at Finokalia in conjunction with those from Advanced Global Atmospheric Gases Experiment (AGAGE) sites at Mace Head (Ireland), Jungfraujoch (Switzerland) and Monte Cimone (Italy). Measured peak mole fractions at Finokalia showed generally smaller amplitudes for HFCs than at the European AGAGE sites, except periodic peaks of HFC-152a, indicating strong upwind sources. Higher peak mole fractions were observed for HCFCs, suggesting continued emissions from nearby developing regions such as Egypt and the Middle East. For 2013, the Eastern Mediterranean inverse emission estimates for the four analysed HFCs and the two HCFCs were 14.7 (6.7–23.3) Tg CO2eq yr-1 and 9.7 (4.3–15.7) Tg CO2eq yr-1, respectively. These emissions contributed 17.3 % (7.9–27.4 %) and 53 % (23.5–86%) to the total inversion domain, which covers the Eastern Mediterranean as well as Central and Western Europe. Greek bottom-up HFC emissions reported to the UNFCCC were much smaller than our top-down estimates, whereas for Turkey our estimates agreed with UNFCCC-reported values for HFC-125 and HFC-143a, but were much and slightly smaller for HFC-134a and HFC-152a, respectively. Sensitivity estimates suggest an improvement of the a posteriori emission estimates, i.e. a reduction of the uncertainties by 40–80 %, compared to an inversion using only the existing Central European AGAGE observations.


2016 ◽  
Author(s):  
Francesco Graziosi ◽  
Jgor Arduini ◽  
Paolo Bonasoni ◽  
Francesco Furlani ◽  
Umberto Giostra ◽  
...  

Abstract. Carbon tetrachloride (CCl4) is a long-lived radiatively-active compound able to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer, the last two decades have seen a sharp decrease in its large scale emissive use with a consequent decline of its atmospheric mole fractions. However, the Montreal Protocol restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived by reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006–2014 were 2.3 (± 0.8) Gg yr−1, with an average decreasing trend of 7.3 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of 25 %. The inversion was also able to allow the localisation of emission "hot-spots" in the domain, with major source areas in Southern France, Central England (UK) and Benelux (Belgium, The Netherlands, Luxembourg), where most of industrial scale production of basic organic chemicals are located. According to our results, European emissions correspond to 4.0 % of global emissions for 2006–2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.


2018 ◽  
Vol 11 (2) ◽  
pp. 753-769 ◽  
Author(s):  
Daniel Kreyling ◽  
Ingo Wohltmann ◽  
Ralph Lehmann ◽  
Markus Rex

Abstract. The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends. The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading). For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10-year simulation, the ozone layer simulated by SWIFT shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30–100 terms. Computers can currently calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.


2016 ◽  
Vol 16 (20) ◽  
pp. 12849-12859 ◽  
Author(s):  
Francesco Graziosi ◽  
Jgor Arduini ◽  
Paolo Bonasoni ◽  
Francesco Furlani ◽  
Umberto Giostra ◽  
...  

Abstract. Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006–2014 were 2.2 (± 0.8) Gg yr−1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006–2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.


2018 ◽  
Vol 18 (6) ◽  
pp. 4069-4092 ◽  
Author(s):  
Fabian Schoenenberger ◽  
Stephan Henne ◽  
Matthias Hill ◽  
Martin K. Vollmer ◽  
Giorgos Kouvarakis ◽  
...  

Abstract. A wide range of anthropogenic halocarbons is released to the atmosphere, contributing to stratospheric ozone depletion and global warming. Using measurements of atmospheric abundances for the estimation of halocarbon emissions on the global and regional scale has become an important top-down tool for emission validation in the recent past, but many populated and developing areas of the world are only poorly covered by the existing atmospheric halocarbon measurement network. Here we present 6 months of continuous halocarbon observations from Finokalia on the island of Crete in the Eastern Mediterranean. The gases measured are the hydrofluorocarbons (HFCs), HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-152a (CH3CHF2) and HFC-143a (CH3CF3) and the hydrochlorofluorocarbons (HCFCs), HCFC-22 (CHClF2) and HCFC-142b (CH3CClF2). The Eastern Mediterranean is home to 250 million inhabitants, consisting of a number of developed and developing countries, for which different emission regulations exist under the Kyoto and Montreal protocols. Regional emissions of halocarbons were estimated with Lagrangian atmospheric transport simulations and a Bayesian inverse modeling system, using measurements at Finokalia in conjunction with those from Advanced Global Atmospheric Gases Experiment (AGAGE) sites at Mace Head (Ireland), Jungfraujoch (Switzerland) and Monte Cimone (Italy). Measured peak mole fractions at Finokalia showed generally smaller amplitudes for HFCs than at the European AGAGE sites except for periodic peaks of HFC-152a, indicating strong upwind sources. Higher peak mole fractions were observed for HCFCs, suggesting continued emissions from nearby developing regions such as Egypt and the Middle East. For 2013, the Eastern Mediterranean inverse emission estimates for the four analyzed HFCs and the two HCFCs were 13.9 (11.3–19.3) and 9.5 (6.8–15.1) Tg CO2eq yr−1, respectively. These emissions contributed 16.8 % (13.6–23.3 %) and 53.2 % (38.1–84.2 %) to the total inversion domain, which covers the Eastern Mediterranean as well as central and western Europe. Greek bottom-up HFC emissions reported to the UNFCCC were higher than our top-down estimates, whereas for Turkey our estimates agreed with UNFCCC-reported values for HFC-125 and HFC-143a, but were much and slightly smaller for HFC-134a and HFC-152a, respectively. Sensitivity estimates suggest an improvement of the a posteriori emission estimates, i.e., a reduction of the uncertainties by 40–80 % in the entire inversion domain, compared to an inversion using only the existing central European AGAGE observations.


2017 ◽  
Author(s):  
Daniel Kreyling ◽  
Ingo Wohltmann ◽  
Ralph Lehmann ◽  
Markus Rex

Abstract. The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends. The Extrapolar SWIFT model employs a repro-modelling approach, where algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equations system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, local ozone column, mixing ratio of ozone and of the ozone depleting families (Cly, Bry, NOy and HOy). We will show that these 9 variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading). For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10 year simulation, the ozone layer, simulated by SWIFT, shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30–100 terms. Nowadays, computers can calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40588-40596
Author(s):  
Tony Köhler ◽  
Thomas Heida ◽  
Sandra Hoefgen ◽  
Niclas Weigel ◽  
Vito Valiante ◽  
...  

We describe a bottom-up approach towards functional enzymes utilizing microgels as carriers for genetic information that enable cell-free protein synthesis, in situ immobilization, and utilization of functional deGFP-MatB.


2021 ◽  
Vol 11 (11) ◽  
pp. 5072
Author(s):  
Byung-Kook Koo ◽  
Ji-Won Baek ◽  
Kyung-Yong Chung

Traffic accidents are emerging as a serious social problem in modern society but if the severity of an accident is quickly grasped, countermeasures can be organized efficiently. To solve this problem, the method proposed in this paper derives the MDG (Mean Decrease Gini) coefficient between variables to assess the severity of traffic accidents. Single models are designed to use coefficient, independent variables to determine and predict accident severity. The generated single models are fused using a weighted-voting-based bagging method ensemble to consider various characteristics and avoid overfitting. The variables used for predicting accidents are classified as dependent or independent and the variables that affect the severity of traffic accidents are predicted using the characteristics of causal relationships. Independent variables are classified as categorical and numerical variables. For this reason, a problem arises when the variation among dependent variables is imbalanced. Therefore, a harmonic average is applied to the weights to maintain the variables’ balance and determine the average rate of change. Through this, it is possible to establish objective criteria for determining the severity of traffic accidents, thereby improving reliability.


2016 ◽  
Author(s):  
Peter G. Simmonds ◽  
Matthew Rigby ◽  
Archibold McCulloch ◽  
Simon O'Doherty ◽  
Dickon Young ◽  
...  

Abstract. High frequency, in situ global observations of HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F), HCFC-142b (CH3CClF2) and HCFC-124 (CHClFCF3) and their main HFC replacements HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-143a (CH3CF3), and HFC-32 (CH2F2) have been used to determine their changing global growth rates and emissions in response to the Montreal Protocol and its recent amendments. The 2007 adjustment to the Montreal Protocol required the accelerated phase-out of HCFCs with global production and consumption capped in 2013, to mitigate their environmental impact as both ozone depleting substances and important greenhouse gases. We find that this change has coincided with a reduction in global emissions of the four HCFCs with aggregated global emissions in 2015 of 444 ± 75 Gg/yr, in CO2 equivalent units (CO2 e) 0.75 ± 0.1 Gt/yr, compared with 483 ± 70 Gg/yr (0.82 ± 0.1 Gt/yr CO2 e) in 2010. (All quoted uncertainties in this paper are 1 sigma). About 80 % of the total HCFC atmospheric burden in 2015 is HCFC-22, where global HCFC emissions appear to have been relatively constant in spite of the 2013 cap on global production and consumption. We attribute this to a probable increase in production and consumption of HCFC-22 in Montreal Protocol Article 5 (developing) countries and the continuing release of HCFC-22 from the large banks which dominate HCFC global emissions. Conversely, the four HFCs all show increasing annual growth rates with aggregated global HFCs emissions in 2015 of 329 ± 70 Gg/yr (0.65 ± 0.12 Gt/yr CO2 e) compared to 2010 with 240 ± 50 Gg/yr (0.47 ± 0.08 Gt/yr CO2 e). As HCFCs are replaced by HFCs we investigate the impact of the shift to refrigerant blends which have lower global warming potentials (GWPs). We also note that emissions of HFC-125 and HFC-32 appear to have increased more rapidly during the 2011–2015 5-yr period compared to 2006–2010.


Sign in / Sign up

Export Citation Format

Share Document