scholarly journals HDO measurements with MIPAS

2007 ◽  
Vol 7 (1) ◽  
pp. 931-970
Author(s):  
J. Steinwagner ◽  
M. Milz ◽  
T. von Clarmann ◽  
N. Glatthor ◽  
U. Grabowski ◽  
...  

Abstract. We have used high spectral resolution spectroscopic measurements from the MIPAS instrument on the Envisat satellite to simultaneously retrieve vertical profiles of H2O and HDO in the stratosphere and uppermost troposphere. A thorough error analysis of the retrievals confirms that reliable δD data can be obtained up to an altitude of ~45 km. Averaging over multiple orbits and thus over longitudes further reduces the random part of the error. The absolute total error of averaged δD is between 36 ‰ and 111‰. With values lower than 42 ‰ the total random error is significantly smaller than the natural variability of δD. The data compare well with previous investigations. The MIPAS measurements now provide a unique global data set of high-quality δD data that will provide novel insight into the stratospheric water cycle.

2007 ◽  
Vol 7 (10) ◽  
pp. 2601-2615 ◽  
Author(s):  
J. Steinwagner ◽  
M. Milz ◽  
T. von Clarmann ◽  
N. Glatthor ◽  
U. Grabowski ◽  
...  

Abstract. We have used high spectral resolution spectroscopic measurements from the MIPAS instrument on the Envisat satellite to simultaneously retrieve vertical profiles of H2O and HDO in the stratosphere and uppermost troposphere. Variations in the deuterium content of water are expressed in the common δ notation, where δD is the deviation of the Deuterium/Hydrogen ratio in a sample from a standard isotope ratio. A thorough error analysis of the retrievals confirms that reliable δD data can be obtained up to an altitude of ~45 km. Averaging over multiple orbits and thus over longitudes further reduces the random part of the error. The absolute total error of averaged δD is between 36‰ and 111‰. With values lower than 42‰ the total random error is significantly smaller than the natural variability of δD. The data compare well with previous investigations. The MIPAS measurements now provide a unique global data set of high-quality δD data that will provide novel insight into the stratospheric water cycle.


2016 ◽  
Vol 9 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Andreas Engel ◽  
Harald Bönisch ◽  
Tim Schwarzenberger ◽  
Hans-Peter Haase ◽  
Katja Grunow ◽  
...  

Abstract. MIPAS-Envisat is a satellite-borne sensor which measured vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation of the MIPAS-Envisat operational retrieval (version 6.0) of N2O, CH4, CFC-12, and CFC-11 by the European Space Agency (ESA). The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations, we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS in early 2005. Retrieval results for N2O, CH4, and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. The more recent low spectroscopic resolution data above 20 km altitude show agreement with the combined uncertainties, while there is a tendency of the earlier high spectral resolution data set to underestimate these species above 25 km. The earlier high spectral resolution data show a significant overestimation of the mixing ratios for N2O, CH4, and CFC-12 below 20 km. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6.0 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios at all altitudes.


2018 ◽  
Vol 10 (12) ◽  
pp. 2003 ◽  
Author(s):  
James Churnside ◽  
Johnathan Hair ◽  
Chris Hostetler ◽  
Amy Scarino

Ocean lidar attenuation and scattering parameters were derived from a high-spectral-resolution lidar (HSRL) using two different retrieval techniques. The first used the standard HSRL retrieval, and the second used only the total backscatter channel and a perturbation retrieval (PR). The motivation is to evaluate differences between the two techniques that would affect the decision of whether to use a simple backscatter lidar or a more complex HSRL in future applications. For the data set investigated, the attenuation coefficient from the PR was an average of 11% lower than that from the HSRL. The PR estimate of the scattering parameter decreased with depth relative to the HSRL estimate, although the overall bias was zero as a result of the calibration procedure. Near the surface, the coefficient of variability in both estimates of attenuation and in HSRL estimates of scattering were around 5%, but that in the PR estimate of scattering was over 10%. At greater depths, the variability increases for all of the profile parameters. The correlation between the two estimates of attenuation coefficient was 0.7. The correlation between scattering parameters was > 0.8 near the surface, but decreased to 0.4 at a depth of around 20 m. Overall, the PR performed better relative to the HSRL in offshore waters than in nearshore waters.


2013 ◽  
Vol 13 (5) ◽  
pp. 2487-2505 ◽  
Author(s):  
S. Groß ◽  
M. Esselborn ◽  
B. Weinzierl ◽  
M. Wirth ◽  
A. Fix ◽  
...  

Abstract. During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.


2020 ◽  
Author(s):  
Chris Hepplewhite ◽  
Larrabee Strow ◽  
Howard Motteler ◽  
Sergio de Souza-Machad ◽  
Steven Buczkowski

<p>NASA's Atmospheric Infrared Sounder (AIRS) started the continuous measurement of the Earth's upwelling infrared radiation at high spectral resolution in Sept. 2002 in a 13:30 polar orbit.  The AIRS record was supplemented by the CrIS sensor flying on the NASA SNPP platform, also in the 13:30 polar orbit, in 2012.  In 2018 a second CrIS sensor on NOAA's JPSS-1 platform (NOAA-20) began operation, also in the 13:30 orbit.  Two more CrIS sensors are presently being procured for the JPSS-2 and 3 satellites, which will extend this record from 2002 through ~2040.  EUMETSAT's METOP-A/B/C provide very similar hyperspectral observations starting with the IASI sensors in the 09:30 orbit, starting in 2007, which will be continued with METOP-SG for years to come.  </p><p>Inter-calibration of all of the operating sensors shows agreement generally to 0.2K or better in brightness temperature.  More importantly, we have shown that the radiometric stability of the AIRS sensors is in the 0.002 K/year range or 0.02K/decade, based on measurements of CO2 and SST trends.   Similar stability is expected for CrIS and IASI.  Community consensus suggests that direct radiance trending, followed by conversion of these trends to geophysical quantities will yield the most accurate climate trends.  </p><p>Here we introduce a new satellite hyperspectral infrared radiance product we call the "Climate Hyperspectral InfraRed Product (CHIRP)" that combines AIRS, CrIS, and IASI into a homogeneous Level 1 radiance product with a common spectral response and channel centers for all three satellites.  This grid is equivalent to an interferometer with optical path differences of 0.8/0.6/0.4 cm for the long-wave/mid-wave/short-wave spectral bands.  This corresponds to a virtual instrument with the same spectral resolution of the JPSS-1 CrIS sensor in the long-wave, with 25/50% degradation in spectral resolution in the mid-wave/short-wave.  This choice allows accurate conversion of the long AIRS record to an equivalent interferometer record.  Conversion of IASI to CHIRP is trivial.  Conversion of all sensors to the CHIRP spectra grid permits simple adjustments of inter-satellite radiometric bias differences since all measurements are first converted to a common spectral grid.  Multiple methods (SNOs, statistical inter-comparisons) indicate these adjustments can be made to the 0.03K level or better.   </p><p>A sample application of CHIRP to climate trending will be given by showing multi-decade anomalies of temperature, humidity, and ozone profiles retrieved from CHIRP radiance anomalies, a retrieval that requires almost no a-priori information.  This data set should yield definitive measurements of water-vapor feedback and heavily contribute to our understanding of both tropospheric and stratospheric temperature trends.   Initial production of CHIRP radiances that combine AIRS and CrIS are expected to begin in late 2020.  </p>


2014 ◽  
Vol 7 (12) ◽  
pp. 4317-4340 ◽  
Author(s):  
R. R. Rogers ◽  
M. A. Vaughan ◽  
C. A. Hostetler ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i.e the AOD of individual layers) and the column AOD product (i.e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as ±0.035 ± 0.05 · (HSRL layer AOD) at night and ±0.05 ± 0.05 · (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as ±0.05 ± 0.07 · (HSRL column AOD) at night and ±0.08 ± 0.1 · (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the data set examined. The decreased signal-to-noise ratio (SNR) during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime, because CALIOP frequently does not detect optically thin aerosol layers with AOD < 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime, we can estimate the minimum extinction detection threshold to be 0.012 km−1 at night and 0.067 km−1 during the daytime in a layer median sense. This extensive validation of level 2 CALIOP AOD products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio; thus, allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval.


2013 ◽  
Vol 13 (5) ◽  
pp. 13721-13772 ◽  
Author(s):  
A. J. Scarino ◽  
M. D. Obland ◽  
J. D. Fast ◽  
S. P. Burton ◽  
R. A. Ferrare ◽  
...  

Abstract. The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root-mean-square (RMS) difference of 157 m and bias difference (HSRL – radiosonde) of 57 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL – Ceilometer) of −9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem – HSRL) of −157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem – HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF-Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.


1995 ◽  
Vol 151 ◽  
pp. 168-169
Author(s):  
S.M. White ◽  
R. Pallavicini ◽  
J. Lim

The Japanese satellite ASCA carries X-ray detectors which combine excellent sensitivity and high spectral resolution. We observed the young, rapidly-rotating K dwarf AB Doradus with ASCA in November 1993. The star’s X-ray flux was essentially steady for the first half of the observation, and then a series of flares occurred during the second half. The flares showed rise times of 30 minutes and decay times of several hours. The quiescent X-ray luminosity was 2 × 1030 ergs s−1 (0.5-10 keV). At the flare peaks, LX(> 0.5 keV)/Lbol = .002.AB Dor has a relatively high count rate in the ASCA data and we can obtain high-quality spectra for different periods of the light curve. In Fig. 1 we present spectra corresponding to the period of quiescence, the rising phase and peak of each of the three flares combined, and the decay periods of each of the flares combined. The rise/peak curve (upper) has been multiplied by 2 for purposes of display. We have subtracted the quiescent spectrum from the flare spectra (i.e., used it as a background spectrum) for this display and subsequent analysis.The detailed differences between these spectra display the importance of the high spectral resolution provided by ASCA. One important difference, not readily evident in this figure, is the Fe K line complex at 6.4-6.7 keV. This line, a diagnostic of hot plasma, is strong in the rise/peak spectrum, moderate in the decay spectrum and weak in the quiescent spectrum. A time profile of the counts in this energy range shows little significant emission during the quiescent periods but strong emission at the flare peaks.


Sign in / Sign up

Export Citation Format

Share Document