scholarly journals The CO<sub>2</sub> inhibition of terrestrial isoprene emission significantly affects future ozone projections

2008 ◽  
Vol 8 (6) ◽  
pp. 19891-19916 ◽  
Author(s):  
P. J. Young ◽  
A. Arneth ◽  
G. Schurgers ◽  
G. Zeng ◽  
J. A. Pyle

Abstract. Simulations of future tropospheric composition often include substantial increases in biogenic isoprene emissions arising from the Arrhenius-like leaf emission response and warmer surface temperatures, and from enhanced vegetation productivity in response to temperature and atmospheric CO2 concentration. However, a number of recent laboratory and field data have suggested a direct inhibition of leaf isoprene production by increasing atmospheric CO2 concentration, notwithstanding isoprene being produced from precursor molecules that include some of the primary products of carbon assimilation. The cellular mechanism that underlies the decoupling of leaf photosynthesis and isoprene production still awaits a full explanation but accounting for this observation in a dynamic vegetation model that contains a semi-mechanistic treatment of isoprene emissions has been shown to change future global isoprene emission estimates notably. Here we use these estimates in conjunction with a chemistry-climate model to compare the effects of isoprene simulations without and with a direct CO2-inhibition on late 21st century O3 and OH levels. The impact on surface O3 was significant. Including the CO2-inhibition of isoprene resulted in opposing responses in polluted (O3 decreases of up to 10 ppbv) vs. less polluted (O3 increases of up to 10 ppbv) source regions, due to isoprene nitrate and peroxy acetyl nitrate (PAN) chemistry. OH concentration increased with relatively lower future isoprene emissions, decreasing methane lifetime by ~7 months. Our simulations underline the large uncertainties in future chemistry and climate studies due to biogenic emission patterns and emphasize the problems of using globally averaged climate metrics to quantify the atmospheric impact of reactive, heterogeneously distributed substances.

2009 ◽  
Vol 9 (8) ◽  
pp. 2793-2803 ◽  
Author(s):  
P. J. Young ◽  
A. Arneth ◽  
G. Schurgers ◽  
G. Zeng ◽  
J. A. Pyle

Abstract. Simulations of future tropospheric composition often include substantial increases in biogenic isoprene emissions arising from the Arrhenius-like leaf emission response and warmer surface temperatures, and from enhanced vegetation productivity in response to temperature and atmospheric CO2 concentration. However, a number of recent laboratory and field data have suggested a direct inhibition of leaf isoprene production by increasing atmospheric CO2 concentration, notwithstanding isoprene being produced from precursor molecules that include some of the primary products of carbon assimilation. The cellular mechanism that underlies the decoupling of leaf photosynthesis and isoprene production still awaits a full explanation but accounting for this observation in a dynamic vegetation model that contains a semi-mechanistic treatment of isoprene emissions has been shown to change future global isoprene emission estimates notably. Here we use these estimates in conjunction with a chemistry-climate model to compare the effects of isoprene simulations without and with a direct CO2-inhibition on late 21st century O3 and OH levels. The impact on surface O3 was significant. Including the CO2-inhibition of isoprene resulted in opposing responses in polluted (O3 decreases of up to 10 ppbv) vs. less polluted (O3 increases of up to 10 ppbv) source regions, due to isoprene nitrate and peroxy acetyl nitrate (PAN) chemistry. OH concentration increased with relatively lower future isoprene emissions, decreasing methane lifetime by ~7 months (6.6%). Our simulations underline the large uncertainties in future chemistry and climate studies due to biogenic emission patterns and emphasize the problems of using globally averaged climate metrics (such as global radiative forcing) to quantify the atmospheric impact of reactive, heterogeneously distributed substances.


2019 ◽  
Vol 16 (19) ◽  
pp. 3883-3910 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2 concentration, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the representation of anthropogenic ignitions and suppression and effects of land use on vegetation and fire. In line with previous studies this highlights the need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and quantitative information of how fuel loads and how flammability changes due to this factor is missing. The response to lightning on global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong inter-annual variation. Climate is therefore likely more important than the other factors for short-term variations and extremes in burned area. This study provides a basis to understand the uncertainties in global fire modelling. Both improvements in process understanding and observational constraints reduce uncertainties in modelling burned area trends.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


2011 ◽  
Vol 31 (6) ◽  
pp. 277-282 ◽  
Author(s):  
Yunxia Wang ◽  
Michael Frei ◽  
Qiling Song ◽  
Lianxin Yang

Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 250 ◽  
Author(s):  
Elroy R. Cober ◽  
Malcolm J. Morrison

From 1993, we have conducted trials with the same set of old to newer soybean cultivars to determine the impact of plant breeding on seed yield, physiological and agronomic characteristics, and seed composition. Since 1993, global atmospheric [CO2] increased by 47 ppm. The objective of our current analysis with this data set was to determine if there were changes in soybean seed yield, quality or phenology attributable to elevated atmospheric CO2 concentration (eCO2), temperature or precipitation. Additionally, we estimated genetic gain annually. Over 23 years, there was a significant increase in atmospheric [CO2] but not in-season average maximum or minimum temperatures, or average in-season precipitation. Seed yield was increased significantly by eCO2, higher precipitation and higher minimum temperatures during flowering and podding. Yield decreased with higher minimum temperatures during vegetative growth and seed filling. Seed oil and also seed protein plus oil concentrations were both reduced with eCO2. Phenology has also changed, with soybean cultivars spending less time in vegetative growth, while time to maturity remained constant. Over the 23 years of the study, genetic improvement rates decreased as [CO2] increased. Newer cultivars are not better adapted to eCO2 and soybean breeders may need to intentionally select for favourable responses to eCO2 in the future.


2011 ◽  
Vol 7 (2) ◽  
pp. 511-526 ◽  
Author(s):  
M. F. Loutre ◽  
A. Mouchet ◽  
T. Fichefet ◽  
H. Goosse ◽  
H. Goelzer ◽  
...  

Abstract. Many sources of uncertainty limit the accuracy of climate projections. Among them, we focus here on the parameter uncertainty, i.e. the imperfect knowledge of the values of many physical parameters in a climate model. Therefore, we use LOVECLIM, a global three-dimensional Earth system model of intermediate complexity and vary several parameters within a range based on the expert judgement of model developers. Nine climatic parameter sets and three carbon cycle parameter sets are selected because they yield present-day climate simulations coherent with observations and they cover a wide range of climate responses to doubled atmospheric CO2 concentration and freshwater flux perturbation in the North Atlantic. Moreover, they also lead to a large range of atmospheric CO2 concentrations in response to prescribed emissions. Consequently, we have at our disposal 27 alternative versions of LOVECLIM (each corresponding to one parameter set) that provide very different responses to some climate forcings. The 27 model versions are then used to illustrate the range of responses provided over the recent past, to compare the time evolution of climate variables over the time interval for which they are available (the last few decades up to more than one century) and to identify the outliers and the "best" versions over that particular time span. For example, between 1979 and 2005, the simulated global annual mean surface temperature increase ranges from 0.24 °C to 0.64 °C, while the simulated increase in atmospheric CO2 concentration varies between 40 and 50 ppmv. Measurements over the same period indicate an increase in global annual mean surface temperature of 0.45 °C (Brohan et al., 2006) and an increase in atmospheric CO2 concentration of 44 ppmv (Enting et al., 1994; GLOBALVIEW-CO2, 2006). Only a few parameter sets yield simulations that reproduce the observed key variables of the climate system over the last decades. Furthermore, our results show that the model response, including its ocean component, is strongly influenced by the model sensitivity to an increase in atmospheric CO2 concentration but much less by its sensitivity to freshwater flux in the North Atlantic. They also highlight weaknesses of the model, in particular its large ocean heat uptake.


2017 ◽  
Vol 28 (2) ◽  
pp. 111 ◽  
Author(s):  
Graeme I. Pearman ◽  
John R. Garratt ◽  
Paul J. Fraser

The potential for carbon dioxide (CO2) in the atmosphere to influence global surface temperatures was first recognized in the mid-nineteenth century. Even so, high-precision measurements of atmospheric CO2 concentration were not commenced until the International Geophysical Year (1957–8), following concerns of the climatic impact of increased use of fossil fuels and the concomitant release of CO2 into the atmosphere. In Australia, an early (1960s–70s) interest in the high-precision measurement of CO2 concentration was stimulated by a study of the photosynthesis and respiration of awheat crop. This study conducted in north-easternVictoria during 19717–2 led two young CSIRO scientists, J. R. Garratt and G. I. Pearman, encouraged by their Chief, C. H. B. Priestley, to extend micro-environment CO2 studies to larger-scale measurements of CO2 concentration in the background atmosphere. The significant extension of the observation programme required refined measurement techniques to improve both the precision and absolute comparability with observations made by laboratories overseas. Joined in 1974 by P. J. Fraser, they identified the impact of pressure broadening on calibration techniques used in the non-dispersive infrared absorption method of CO2 concentration measurement. This, in turn, led to improved inter-comparability of CO2 concentration data collected around the globe. Acomprehensive aircraft-based air sampling programmewas established in the early 1970s, leading to increased understanding of the time and space variability of CO2 concentration throughout the depth of the troposphere and lower stratosphere in the mid-latitudes of the Southern Hemisphere. In turn this led to: (i) the establishment of a permanent ground-based observatory at Cape Grim, north-western Tasmania; (ii) the development of carbon cycle models; and (iii) measurements of 12CO2, 13CO2 and 14CO2 relative abundances in current and past atmospheres, the last from air samples trapped in ice cores (described in Part 2, the companion paper). The accumulated data from these studies, together with those collected by international colleagues, form the basis of our understanding of the changes of CO2 concentration over thousands of years. In addition, the data have contributed to our understanding of the mechanisms of past and present biogeochemical cycling of CO2 that provides the predictive basis for future changes in CO2 concentration.


2006 ◽  
Vol 19 (5) ◽  
pp. 723-740 ◽  
Author(s):  
R. J. Stouffer ◽  
A. J. Broccoli ◽  
T. L. Delworth ◽  
K. W. Dixon ◽  
R. Gudgel ◽  
...  

Abstract The climate response to idealized changes in the atmospheric CO2 concentration by the new GFDL climate model (CM2) is documented. This new model is very different from earlier GFDL models in its parameterizations of subgrid-scale physical processes, numerical algorithms, and resolution. The model was constructed to be useful for both seasonal-to-interannual predictions and climate change research. Unlike previous versions of the global coupled GFDL climate models, CM2 does not use flux adjustments to maintain a stable control climate. Results from two model versions, Climate Model versions 2.0 (CM2.0) and 2.1 (CM2.1), are presented. Two atmosphere–mixed layer ocean or slab models, Slab Model versions 2.0 (SM2.0) and 2.1 (SM2.1), are constructed corresponding to CM2.0 and CM2.1. Using the SM2 models to estimate the climate sensitivity, it is found that the equilibrium globally averaged surface air temperature increases 2.9 (SM2.0) and 3.4 K (SM2.1) for a doubling of the atmospheric CO2 concentration. When forced by a 1% per year CO2 increase, the surface air temperature difference around the time of CO2 doubling [transient climate response (TCR)] is about 1.6 K for both coupled model versions (CM2.0 and CM2.1). The simulated warming is near the median of the responses documented for the climate models used in the 2001 Intergovernmental Panel on Climate Change (IPCC) Working Group I Third Assessment Report (TAR). The thermohaline circulation (THC) weakened in response to increasing atmospheric CO2. By the time of CO2 doubling, the weakening in CM2.1 is larger than that found in CM2.0: 7 and 4 Sv (1 Sv ≡ 106 m3 s−1), respectively. However, the THC in the control integration of CM2.1 is stronger than in CM2.0, so that the percentage change in the THC between the two versions is more similar. The average THC change for the models presented in the TAR is about 3 or 4 Sv; however, the range across the model results is very large, varying from a slight increase (+2 Sv) to a large decrease (−10 Sv).


Sign in / Sign up

Export Citation Format

Share Document