scholarly journals Stratospheric ozone in the post-CFC era

2008 ◽  
Vol 8 (6) ◽  
pp. 20223-20237 ◽  
Author(s):  
F. Li ◽  
R. S. Stolarski ◽  
P. A. Newman

Abstract. Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975–1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post-CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.

2009 ◽  
Vol 9 (6) ◽  
pp. 2207-2213 ◽  
Author(s):  
F. Li ◽  
R. S. Stolarski ◽  
P. A. Newman

Abstract. Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975–1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post-CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.


2021 ◽  
Vol 21 (14) ◽  
pp. 11041-11052
Author(s):  
Ville Maliniemi ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Pavle Arsenovic ◽  
Daniel R. Marsh

Abstract. Ozone is expected to fully recover from the chlorofluorocarbon (CFC) era by the end of the 21st century. Furthermore, because of anthropogenic climate change, a cooler stratosphere decelerates ozone loss reactions and is projected to lead to a super recovery of ozone. We investigate the ozone distribution over the 21st century with four different future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). At the end of the 21st century, the equatorial upper stratosphere has roughly 0.5 to 1.0 ppm more ozone in the scenario with the highest greenhouse gas emissions compared to the conservative scenario. Polar ozone levels exceed those in the pre-CFC era in scenarios that have the highest greenhouse gas emissions. This is true in the Arctic stratosphere and the Antarctic lower stratosphere. The Antarctic upper stratosphere is an exception, where different scenarios all have similar levels of ozone during winter, which do not exceed pre-CFC levels. Our results show that this is due to excess nitrogen oxides (NOx) descending faster from above in the stronger scenarios of greenhouse gas emissions. NOx in the polar thermosphere and upper mesosphere is mainly produced by energetic electron precipitation (EEP) and partly by solar UV via transport from low latitudes. Our results indicate that the thermospheric/upper mesospheric NOx will be important factor for the future Antarctic ozone evolution and could potentially prevent a super recovery of ozone in the upper stratosphere.


2011 ◽  
Vol 11 (4) ◽  
pp. 10769-10797 ◽  
Author(s):  
A. F. Bais ◽  
K. Tourpali ◽  
A. Kazantzidis ◽  
H. Akiyoshi ◽  
S. Bekki ◽  
...  

Abstract. Surface erythemal solar irradiance (UV-Ery) from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate changes due to increasing greenhouse gas concentrations. The latter include effects on both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and from the diversity in the CCM projections. The calculations suggest that relative to 1980 annually mean UV-Ery in the 2090s will be on average ~12% lower at high latitudes in both hemispheres, ~3% lower at mid latitudes, and marginally higher (~1%) in the tropics. The largest reduction (~16%) is projected for Antarctica in October. Cloud effects result in additional 2–3% reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (~1%). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone dynamics due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances. At high northern latitudes, the projected decreases in cloud transmittance towards the end of the 21st century will likely reduce the yearly average surface erythemal irradiance by up to 10% with respect to the 1960s.


2011 ◽  
Vol 11 (15) ◽  
pp. 7533-7545 ◽  
Author(s):  
A. F. Bais ◽  
K. Tourpali ◽  
A. Kazantzidis ◽  
H. Akiyoshi ◽  
S. Bekki ◽  
...  

Abstract. Monthly averaged surface erythemal solar irradiance (UV-Ery) for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average ~12 % lower at high latitudes in both hemispheres, ~3 % lower at mid latitudes, and marginally higher (~1 %) in the tropics. The largest reduction (~16 %) is projected for Antarctica in October. Cloud effects are responsible for 2–3 % of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (~1 %). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances. At northern high latitudes (60°–90°), the projected decreases in cloud transmittance towards the end of the 21st century will reduce the yearly average surface erythemal irradiance by ~5 % with respect to the 1960s.


2018 ◽  
Vol 18 (11) ◽  
pp. 8409-8438 ◽  
Author(s):  
Sandip S. Dhomse ◽  
Douglas Kinnison ◽  
Martyn P. Chipperfield ◽  
Ross J. Salawitch ◽  
Irene Cionni ◽  
...  

Abstract. >We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1σ uncertainty of 2043–2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039–2050), and at Northern Hemisphere mid-latitudes in 2032 (2020–2044). In the polar regions, the return dates are 2060 (2055–2066) in the Antarctic in October and 2034 (2025–2043) in the Arctic in March. The earlier return dates in the Northern Hemisphere reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ∼ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ∼ 15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular those of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model–model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that it is more important to have multi-member (at least three) ensembles for each scenario from every established participating model, rather than a large number of individual models.


2012 ◽  
Vol 12 (23) ◽  
pp. 11309-11317 ◽  
Author(s):  
L. E. Revell ◽  
G. E. Bodeker ◽  
P. E. Huck ◽  
B. E. Williamson ◽  
E. Rozanov

Abstract. Through the 21st century, anthropogenic emissions of the greenhouse gases N2O and CH4 are projected to increase, thus increasing their atmospheric concentrations. Consequently, reactive nitrogen species produced from N2O and reactive hydrogen species produced from CH4 are expected to play an increasingly important role in determining stratospheric ozone concentrations. Eight chemistry-climate model simulations were performed to assess the sensitivity of stratospheric ozone to different emissions scenarios for N2O and CH4. Global-mean total column ozone increases through the 21st century in all eight simulations as a result of CO2-induced stratospheric cooling and decreasing stratospheric halogen concentrations. Larger N2O concentrations were associated with smaller ozone increases, due to reactive nitrogen-mediated ozone destruction. In the simulation with the largest N2O increase, global-mean total column ozone increased by 4.3 DU through the 21st century, compared with 10.0 DU in the simulation with the smallest N2O increase. In contrast, larger CH4 concentrations were associated with larger ozone increases; global-mean total column ozone increased by 16.7 DU through the 21st century in the simulation with the largest CH4 concentrations and by 4.4 DU in the simulation with the lowest CH4 concentrations. CH4 leads to ozone loss in the upper and lower stratosphere by increasing the rate of reactive hydrogen-mediated ozone loss cycles, however in the lower stratosphere and troposphere, CH4 leads to ozone increases due to photochemical smog-type chemistry. In addition to this mechanism, total column ozone increases due to H2O-induced cooling of the stratosphere, and slowing of the chlorine-catalyzed ozone loss cycles due to an increased rate of the CH4 + Cl reaction. Stratospheric column ozone through the 21st century exhibits a near-linear response to changes in N2O and CH4 surface concentrations, which provides a simple parameterization for the ozone response to changes in these gases.


2012 ◽  
Vol 12 (7) ◽  
pp. 17583-17605 ◽  
Author(s):  
L. E. Revell ◽  
G. E. Bodeker ◽  
P. E. Huck ◽  
B. E. Williamson ◽  
E. Rozanov

Abstract. Through the 21st century, anthropogenic emissions of the greenhouse gases N2O and CH4 are projected to increase, thus increasing their atmospheric concentrations. Consequently, reactive nitrogen species produced from N2O and reactive hydrogen species produced from CH4 are expected to play an increasingly important role in determining stratospheric ozone concentrations. Eight chemistry-climate model simulations were performed to assess the sensitivity of stratospheric ozone to different emissions scenarios for N2O and CH4. Increases in reactive nitrogen-mediated ozone loss resulting from increasing N2O concentrations lead to a decrease in global-mean total column ozone. Increasing CH4 concentrations increase the rate of reactive hydrogen-mediated ozone loss in the upper stratosphere. Overall however, increasing CH4 concentrations lead to an increase in global-mean total column ozone. Stratospheric column ozone over the 21st century exhibits a near-linear response to changes in N2O and CH4 surface concentrations, which provides a simple parameterization for the ozone response to changes in these gases.


2018 ◽  
Author(s):  
Sandip Dhomse ◽  
Douglas Kinnison ◽  
Martyn P. Chipperfield ◽  
Irene Cionni ◽  
Michaela Hegglin ◽  
...  

Abstract. We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (±20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new CCMI simulations project that global total column ozone will return to 1980 values in 2047 (with a 1-σ uncertainty of 2042–2052). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2046 (2042–2050), and at Northern Hemisphere mid-latitudes in 2034 (2024–2044). In the polar regions, the return dates are 2062 (2055–2066) in the Antarctic in October and 2035 (2025–2040) in the Arctic in March. The earlier return dates in the NH reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5–15 years, depending on the region. In the tropics only around half the models predict a return to 1980 values, at around 2040, while the other half do not reach this value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine, which is the main driver of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10–20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, the effect in the simulations analysed here is small and at the limit of detectability from the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ~ 15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also changes ozone return by ~ 15 years, again mainly through its impact in the tropics. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that is more important to have multi-member (at least 3) ensembles for each scenario from each established participating model, rather than a large number of individual models.


2021 ◽  
Vol 8 ◽  
Author(s):  
James Keeble ◽  
Yu Yeung Scott Yiu ◽  
Alexander T. Archibald ◽  
Fiona O’Connor ◽  
Alistair Sellar ◽  
...  

Stratospheric ozone projections in the tropics, modeled using the UKESM1 Earth system model, are explored under different Shared Socioeconomic Pathways (SSPs). Consistent with other studies, it is found that tropical stratospheric column ozone does not return to 1980s values by the end of the 21st century under any SSP scenario as increased ozone mixing ratios in the tropical upper stratosphere are offset by continued ozone decreases in the tropical lower stratosphere. Stratospheric column ozone is projected to be largest under SSP scenarios with the smallest change in radiative forcing, and smallest for SSP scenarios with larger radiative forcing, consistent with a faster Brewer-Dobson circulation at high greenhouse gas loadings. This study explores the use of machine learning (ML) techniques to make accurate, computationally inexpensive projections of tropical stratospheric column ozone. Four ML techniques are investigated: Ridge regression, Lasso regression, Random Forests and Extra Trees. All four techniques investigated here are able to make projections of future tropical stratospheric column ozone which agree well with those made by the UKESM1 Earth system model, often falling within the ensemble spread of UKESM1 simulations for a broad range of SSPs. However, all techniques struggle to make accurate projects for the final decades of the SSP5-8.5 scenario. Accurate projections can only be achieved when the ML methods are trained on sufficient data, including both historical and future simulations. When trained only on historical data, the projections made using models based on ML techniques fail to accurately predict tropical stratospheric ozone changes. Results presented here indicate that, when sufficiently trained, ML models have the potential to make accurate, computationally inexpensive projections of tropical stratospheric column ozone. Further development of these models may reduce the computational burden placed on fully coupled chemistry-climate and Earth system models and enable the exploration of tropical stratospheric column ozone recovery under a much broader range of future emissions scenarios.


2017 ◽  
Author(s):  
Antara Banerjee ◽  
Amanda C. Maycock ◽  
John A. Pyle

Abstract. The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model. Projected measures to improve air-quality through reductions in tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 Wm−2. This is opposed by a positive ozone RF of 0.07 Wm−2 due to future decreases in ODSs, which is mainly driven by an increase in tropospheric ozone through stratosphere-to-troposphere exchange. An increase in methane abundance by more than a factor of two (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.19 Wm−2, which would greatly outweigh the climate benefits of tropospheric non-methane ozone precursor reductions. A third of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gas concentrations, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.06 Wm−2) for RCP4.5 and a negative RF (−0.07 Wm−2) for the RCP8.5 scenario. This dependence arises from differences in the contribution to RF from stratospheric ozone changes.


Sign in / Sign up

Export Citation Format

Share Document