scholarly journals Patterns of Saharan dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

2009 ◽  
Vol 9 (3) ◽  
pp. 13177-13198 ◽  
Author(s):  
Y. Ben-Ami ◽  
I. Koren ◽  
O. Altaratz

Abstract. One of the most important factors that determines the transported dust effect is its vertical distribution in the atmosphere. Until the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the vertical distribution was studied mostly by in-situ measurements and models. CALIPSO, as a part of the A-Train constellation has opened an opportunity to study the transported dust vertical structure in a large number of events (sufficient statistics). In this study the vertical structure of Saharan dust and stratiform clouds is analyzed over the Atlantic Ocean for the 2006–2007 winter (December–February) and the summer of 2006 (June–August). By using CALIPSO backscatter measurements over the dust route, we describe the differences in dust transport between the seasons. We show a bi-modal distribution of the average dust plumes height in both seasons (it is less clear in the winter). It suggests that a significant part of the dust is transported near and within the marine boundary layer and interacts with shallow clouds on both seasons.

2009 ◽  
Vol 9 (20) ◽  
pp. 7867-7875 ◽  
Author(s):  
Y. Ben-Ami ◽  
I. Koren ◽  
O. Altaratz

Abstract. One of the most important factors that determine the transported dust effect on the atmosphere is its vertical distribution. In this study the vertical structure of North African dust and stratiform low clouds is analyzed over the Atlantic Ocean for the 2006–2007 boreal winter (December–February) and boreal summer of 2006 (June–August). By using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) backscatter measurements over the dust routes, we describe the differences in dust transport between the seasons. We show a bi-modal distribution of the average dust plumes height in both seasons (it is less clear in the winter). The higher plume top height is 5.1±0.4 km, near the African coast line in the summer and 3.7±0.4 km in the winter. The lower plume merges with the marine boundary layer, in both seasons. Our study suggests that a significant part of the dust is transported near and within the marine boundary layer and interacts with low stratiform clouds.


2017 ◽  
Vol 17 (9) ◽  
pp. 5893-5919 ◽  
Author(s):  
Eleni Marinou ◽  
Vassilis Amiridis ◽  
Ioannis Binietoglou ◽  
Athanasios Tsikerdekis ◽  
Stavros Solomos ◽  
...  

Abstract. In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007–2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm−1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm−1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.


2018 ◽  
Author(s):  
Franco Marenco ◽  
Claire Ryder ◽  
Victor Estellés ◽  
Debbie O'Sullivan ◽  
Jennifer Brooke ◽  
...  

Abstract. The Saharan Air Layer (SAL) in the summertime Eastern Atlantic is typically well-mixed and 3–4 km deep, overlying the marine boundary layer (MBL). In this paper, we show experimental evidence that at times a very different structure can be observed. During the AER-D airborne campaign in August 2015, the typical structure described above was observed most of the times, and was associated with a moderate dust content yielding an Aerosol Optical Depth (AOD) of 0.3–0.4 at 355 nm. In an intense event, however, an unprecedented vertical structure was observed close to the Eastern boundary of the basin, displaying an uneven vertical distribution and a very large AOD (1.5–2), with most of the dust in a much lower level than usual (0.3–2 km). Estimated dust concentrations and column loadings spanned 300–5500 μg m−3 and 0.8–7.5 g m−2, respectively. The shortwave direct radiative impact of the intense dust event has been evaluated to be as large as −260 ± 30 and −120 ± 15 W m−2 at the surface and top of atmosphere, respectively. This event was also correlated with anomalous lightning activity in the Canary Islands. In all cases, our measurements detected a broad distribution of aerosol sizes, ranging from ~ 0.1 to ~ 80 μm (diameter), thus highlighting the presence of giant particles. Giant dust particles were also found in the MBL. We note that most aerosol models may miss the giant particles due to the fact that they use size bins up to 10–25 μm. The unusual vertical structure and the giant particles may have implications for dust transport over the Atlantic during intense events, and may affect the estimate of dust deposited to the Ocean. We believe that future campaigns should focus more on events with high aerosol load, and that instrumentation capable of detecting giant particles will be key to dust observations in this part of the world.


2018 ◽  
Vol 18 (23) ◽  
pp. 17655-17668 ◽  
Author(s):  
Franco Marenco ◽  
Claire Ryder ◽  
Victor Estellés ◽  
Debbie O'Sullivan ◽  
Jennifer Brooke ◽  
...  

Abstract. The Saharan Air Layer (SAL) in the summertime eastern Atlantic is typically well mixed and 3–4 km deep, overlying the marine boundary layer (MBL). In this paper, we show experimental evidence that at times a very different structure can be observed. During the AERosol properties – Dust (AER-D) airborne campaign in August 2015, the typical structure described above was observed most of the time, and was associated with a moderate dust content yielding an aerosol optical depth (AOD) of 0.3–0.4 at 355 nm. In an intense event, however, an unprecedented vertical structure was observed close to the eastern boundary of the basin, displaying an uneven vertical distribution and a very large AOD (1.5–2), with most of the dust in a much lower level than usual (0.3–2 km). Estimated dust concentrations and column loadings for all flights during the campaign spanned 300–5500 and 0.8–7.5 g m−2, respectively. The shortwave direct radiative impact of the intense dust event has been evaluated to be as large as -260±30 and -120±15 W m−2 at the surface and top of atmosphere (TOA), respectively. We also report the correlation of this event with anomalous lightning activity in the Canary Islands. In all cases, our measurements detected a broad distribution of aerosol sizes, ranging from ∼0.1 to ∼80 µm (diameter), thus highlighting the presence of giant particles. Giant dust particles were also found in the MBL. We note that most aerosol models may miss the giant particles due to the fact that they use size bins up to 10–25 µm. The unusual vertical structure and the giant particles may have implications for dust transport over the Atlantic during intense events and may affect the estimate of dust deposited to the ocean. We believe that future campaigns could focus more on events with high aerosol load and that instrumentation capable of detecting giant particles will be key to dust observations in this part of the world.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Liu ◽  
Yingjian Wang ◽  
Zhien Wang ◽  
Jun Zhou

The lack of information on the vertical distribution of dust, in turn, results in large uncertainties when attempting to evaluate the impacts of dust on climate processes. We analyzed over two years of LIDAR measurements from NASA’s CALIPSO and CloudSat satellites to document the vertical pathways of transatlantic transport of Saharan dust. Our analysis overcomes the limitations of quantitative dust detections with passive satellite measurements over land and low clouds and provides the fine vertical resolved structures. The results show the strong seasonal shift in dust source regions and transportation pathways due to the meteorological and thermodynamical conditions, which also control the dust vertical distribution as well as the depth of the dust layer. The dust layer top descending rates of 35 m/degree in summer, 25 m/degree in autumn and spring, and 10 m/degree in winter are found, respectively, while the dust is being transported across the Atlantic. Comparison with the model simulation highlights the potentials of dust observations using CALIPSO LIDAR. The observed seasonal dependence of these pathways gives new insights into the transport of the Saharan dust and provides important guidance for simulations of the production and transport of the global dust aerosol.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
György Varga ◽  
Pavla Dagsson-Walhauserová ◽  
Fruzsina Gresina ◽  
Agusta Helgadottir

AbstractMineral dust emissions from Saharan sources have an impact on the atmospheric environment and sedimentary units in distant regions. Here, we present the first systematic observations of long-range Saharan dust transport towards Iceland. Fifteen Saharan dust episodes were identified to have occurred between 2008 and 2020 based on aerosol optical depth data, backward trajectories and numerical models. Icelandic samples from the local dust sources were compared with deposited dust from two severe Saharan dust events in terms of their granulometric and mineralogical characteristics. The episodes were associated with enhanced meridional atmospheric flow patterns driven by unusual meandering jets. Strong winds were able to carry large Saharan quartz particles (> 100 µm) towards Iceland. Our results confirm the atmospheric pathways of Saharan dust towards the Arctic, and identify new northward meridional long-ranged transport of giant dust particles from the Sahara, including the first evidence of their deposition in Iceland as previously predicted by models.


1997 ◽  
Vol 28 ◽  
pp. S461-S462
Author(s):  
S. Külzer ◽  
R. Ries ◽  
L. Schütz

2011 ◽  
Vol 11 (7) ◽  
pp. 3067-3091 ◽  
Author(s):  
C. Córdoba-Jabonero ◽  
M. Sorribas ◽  
J. L. Guerrero-Rascado ◽  
J. A. Adame ◽  
Y. Hernández ◽  
...  

Abstract. The synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in-situ measurements is devoted to the characterization of dust intrusions. A case study of air masses advected from the Saharan region to the Canary Islands and the Iberian Peninsula, located relatively close and far away from the dust sources, respectively, was considered for this purpose. The observations were performed over three Spanish geographically strategic stations within the dust-influenced area along a common dust plume pathway monitored from 11 to 19 of March 2008. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected. Meteorological conditions favoured the dust plume transport over the area under study. Backtrajectory analysis clearly revealed the Saharan region as the source of the dust intrusion. Under the Saharan air masses influence, AERONET Aerosol Optical Depth at 500 nm (AOD500) ranged from 0.3 to 0.6 and Ångström Exponent at 440/675 nm wavelength pair (AE440/675) was lower than 0.5, indicating a high loading and predominance of coarse particles during those dusty events. Lidar observations characterized their vertical layering structure, identifying different aerosol contributions depending on altitude. In particular, the 3-km height dust layer transported from the Saharan region and observed over SCO site was later on detected at ARN and GRA stations. No significant differences were found in the lidar (extinction-to-backscatter) ratio (LR) estimation for that dust plume over all stations when a suitable aerosol scenario for lidar data retrieval is selected. Lidar-retrieved LR values of 60–70 sr were obtained during the main dust episodes. These similar LR values found in all the stations suggest that dust properties were kept nearly unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by means of ground-level in-situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition processes observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred over each station. Discrepancies between columnar-integrated and ground-level in-situ measurements show a clear dependence on height of the dust particle size distribution. Then, further vertical size-resolved observations are needed for evaluation of the impact on surface of the Saharan dust arrival to the Iberian Peninsula.


Sign in / Sign up

Export Citation Format

Share Document