scholarly journals An overview of the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale, roadmap and highlights

2009 ◽  
Vol 9 (5) ◽  
pp. 19713-19781 ◽  
Author(s):  
F. Cairo ◽  
J. P. Pommereau ◽  
K. S. Law ◽  
H. Schlager ◽  
A. Garnier ◽  
...  

Abstract. A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities. Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W), Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloon and sonde flights were conducted from Niamey (13.5° N, 2.0° E), Niger. The stratospheric aircraft and balloon flights intended to gather experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey. These experiments allowed a characterization of the tropopause and lower stratosphere of the region. We provide here an overview of the campaign activities together with a description of the general meteorological situation during the flights and a summary of the observations accomplished.

2010 ◽  
Vol 10 (5) ◽  
pp. 2237-2256 ◽  
Author(s):  
F. Cairo ◽  
J. P. Pommereau ◽  
K. S. Law ◽  
H. Schlager ◽  
A. Garnier ◽  
...  

Abstract. A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities. Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W), Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloons and sonde flights were conducted from Niamey (13.5° N, 2.0° E), Niger. Altogether, these measurements were intended to provide experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey. These experiments allowed a characterization of the tropopause and lower stratosphere of the region. The paper provides an overview of SCOUT-AMMA campaign activities together with a description of the meteorology of the African monsoon and the situation prevailing during the flights and a brief summary of the observations accomplished.


2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


2016 ◽  
Vol 29 (9) ◽  
pp. 3353-3371 ◽  
Author(s):  
Dominique Bouniol ◽  
Rémy Roca ◽  
Thomas Fiolleau ◽  
D. Emmanuel Poan

Abstract Mesoscale convective systems (MCSs) are important drivers of the atmospheric large-scale circulation through their associated diabatic heating profile. Taking advantage of recent tracking techniques, this study investigates the evolution of macrophysical, microphysical, and radiative properties over the MCS life cycle by merging geostationary and polar-orbiting satellite data. These observations are performed in three major convective areas: continental West Africa, the adjacent Atlantic Ocean, and the open Indian Ocean. MCS properties are also investigated according to internal subregions (convective, stratiform, and nonprecipitating anvil). Continental MCSs show a specific life cycle, with more intense convection at the beginning. Larger and denser hydrometeors are thus found at higher altitudes, as well as up to the cirriform subregion. Oceanic MCSs have more constant reflectivity values, suggesting a less intense convective updraft, but more persistent intensity. A layer of small crystals is found in all subregions, but with a depth that varies according to the MCS subregion and life cycle. Radiative properties are also examined. It appears that the evolution of large and dense hydrometeors tends to control the evolution of the cloud albedo and the outgoing longwave radiation. The impact of dense hydrometeors, detrained from the convective towers, is also seen in the radiative heating profiles, in particular in the shortwave domain. A dipole of cooling near the cloud top and heating near the cloud base is found in the longwave; this cooling intensifies near the end of the life cycle.


2021 ◽  
Author(s):  
Romain Fiévet ◽  
Bettina Meyer ◽  
Jan Olaf Haerter

<p>Spontaneous aggregation of clouds is a puzzling phenomenon observed in field studies [Holloway et al. (2017)] and idealized simulations alike [Held et al. (1993), Bretherton et al. (2005)]. With its relevance to climate sensitivity and extreme events, aggregation continues to be heavily studied, [Wing et al., 2017 for a review], with radiative-convective feedbacks emerging as main drivers of simulated convective self-aggregation (CSA) [Mueller & Bony (2015)].</p><p>In state-of-the art cloud-resolving models, CSA finds itself consistently hampered by finer horizontal resolutions [Muller & Held (2012), Yanase et al. (2020)]. This feature was ascribed to the effect of cold pool (CP) gust fronts in opposing the positive moisture feedback underlying CSA [Jeevanjee & Romps (2013)]. In contrast, recent numerical experiments [Haerter et al. (2020)] with diurnally oscillating surface temperature highlights an orthogonal effect: stronger CPs, driven by small-scale density gradients, promote cloud field self-organization into mesoscale convective systems (MCS). Interestingly, this upscale growth, which we here term diurnal self-organisation (DSO), differs from classical CSA as it is driven by CPs rather than large-scale radiative imbalances. In stark contrast to CSA, strengthening CPs promotes this organization effect.</p><p>Hence, numerical simulations of CSA and DSO should go beyond the typical cloud-resolving paradigm and achieve cold pool-resolving capabilities. The current study systematically examines the impact of model resolution on CP effects. First, numerical convergence is probed in a 12km x 20km laterally periodic domain where a single CP propagates and self-collides at the domain's edges. As the spatial resolution is stepwise increased from 250 to 25m, it is shown that the initially coarsely resolved density current dissipates and collision and updraft effects are weak. As finer resolution is approached, we identify a cold pool resolving resolution D, which is deemed satisfactory for propagation and collision properties. Second, convergence for a (250km)2 domain under a diurnal radiative cycle is assessed at various spatial resolutions, including the scale D. This mesoscale configuration allows us to quantify the impact of resolution of cold pool dynamics on DSO.</p><p>Together, this work systematically lays out the numerical requirements to study mesoscale clustering by means of explicit numerical simulations.</p>


2013 ◽  
Vol 28 (4) ◽  
pp. 994-1018 ◽  
Author(s):  
Jeffrey D. Duda ◽  
William A. Gallus

Abstract A set of mesoscale convective systems (MCSs) was simulated using the Weather Research and Forecasting model with 3-km grid spacing to investigate the skill at predicting convective initiation and upscale evolution into an MCS. Precipitation was verified using equitable threat scores (ETSs), the neighborhood-based fractions skill score (FSS), and the Method of Object-Based Diagnostic Evaluation. An illustrative case study more closely examines the strong influence that smaller-scale forcing features had on convective initiation. Initiation errors for the 36 cases were in the south-southwest direction on average, with a mean absolute displacement error of 105 km. No systematic temporal error existed, as the errors were approximately normally distributed. Despite earlier findings that quantitative precipitation forecast skill in convection-parameterizing simulations is a function of the strength of large-scale forcing, this relationship was not present in the present study for convective initiation. However, upscale evolution was better predicted for more strongly forced events according to ETSs and FSSs. For the upscale evolution, the relationship between ETSs and object-based ratings was poor. There was also little correspondence between object-based ratings and the skill at convective initiation. The lack of a relationship between the strength of large-scale forcing and model skill at forecasting initiation is likely due to a combination of factors, including the strong role of small-scale features that exert an influence on initiation, and potential errors in the analyses used to represent observations. The limit of predictability of individual convective storms on a 3-km grid must also be considered.


2014 ◽  
Vol 14 (10) ◽  
pp. 5037-5055 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of stably stratified flows are carried out and analyzed using the mesoscale atmospheric model Méso-NH for applications to kilometer- and subkilometer-scale turbulence in the in the upper troposphere–lower stratosphere. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8 × 109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral, direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the subkilometric range, down to the Ozmidov scales that obey isotropic Kolmogorov turbulence. This study shows the capability of atmospheric models like Méso-NH to represent the turbulence at subkilometer scales.


2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


Author(s):  
Sharon E. Nicholson ◽  
Douglas Klotter ◽  
Adam T. Hartman

AbstractThis article examined rainfall enhancement over Lake Victoria. Estimates of over-lake rainfall were compared with rainfall in the surrounding lake catchment. Four satellite products were initially tested against estimates based on gauges or water balance models. These included TRMM 3B43, IMERG V06 Final Run (IMERG-F), CHIRPS2, and PERSIANN-CDR. There was agreement among the satellite products for catchment rainfall but a large disparity among them for over-lake rainfall. IMERG-F was clearly an outlier, exceeding the estimate from TRMM 3B43 by 36%. The overestimation by IMERG-F was likely related to passive microwave assessments of strong convection, such as prevails over Lake Victoria. Overall, TRMM 3B43 showed the best agreement with the "ground truth" and was used in further analyses. Over-lake rainfall was found to be enhanced compared to catchment rainfall in all months. During the March-to-May long rains the enhancement varied between 40% and 50%. During the October-to-December short rains the enhancement varied between 33% and 44%. Even during the two dry seasons the enhancement was at least 20% and over 50% in some months. While the magnitude of enhancement varied from month to month, the seasonal cycle was essentially the same for over-lake and catchment rainfall, suggesting that the dominant influence on over-lake rainfall is the large-scale environment. The association with Mesoscale Convective Systems (MCSs) was also evaluated. The similarity of the spatial patterns of rainfall and MCS count each month suggested that these produced a major share of rainfall over the lake. Similarity in interannual variability further supported this conclusion.


2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


Sign in / Sign up

Export Citation Format

Share Document