scholarly journals Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer

2017 ◽  
Vol 10 (2) ◽  
pp. 709-730 ◽  
Author(s):  
Jonas Witthuhn ◽  
Hartwig Deneke ◽  
Andreas Macke ◽  
Germar Bernhard

Abstract. The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.

2016 ◽  
Author(s):  
Jonas Witthuhn ◽  
Hartwig Deneke ◽  
Andreas Macke ◽  
Germar Bernhard

Abstract. The 19 channel rotating shadow band radiometer GUVis-3511 built by Biospherical Instruments is introduced as an instrument which is able to provide automated ship borne measurements of the direct, diffuse and global spectral irradiance components without a requirement for stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Angström exponent, and precipitable water can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be 4.24 % at 95 % CI for ship borne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sun photometer at a land site and a manually operated Microtops II sun photometer on a ship is presented, yielding relative deviations of less than 3 % and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for ship borne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth at 510 nm can be retrieved with an uncertainty of 0.0032 for a 95 % CI. Only minor deviations occur due to the different methods used for estimating Rayleigh scattering and gas absorption optical depths, as implemented by AERONET and in our processing. Relying on the cross-calibration of the 940 nm water vapor channel with the Cimel sun photometer, the column amount of precipitable water has been estimated with an uncertainty of +−0.034 cm. More research is needed to estimate the accuracy of the instrument for low sun (solar zenith angles larger than 70°) and during periods with strong swell.


2013 ◽  
Vol 30 (5) ◽  
pp. 929-941 ◽  
Author(s):  
Hao Zhang ◽  
Bing Zhang ◽  
Dongmei Chen ◽  
Junsheng Li ◽  
Guangning Zhao

Abstract Beer’s attenuation law is the basis for the retrieval of aerosol optical depth (AOD) from sunphotometer data. However, the filter band function causes uncertainty during the retrieval of AOD from sunphotometer data, particularly for channels covering spectral regions of strong gas absorption. In this work, the uncertainty in AOD retrieval due to the filter band function is systematically analyzed by employing fine spectral absorption cross sections obtained from the Molecular Spectroscopy and Chemical Kinetics Group and the line-by-line radiative transfer model (LBLRTM). The uncertainty in AOD retrieval includes the uncertainty due to the wings of the filter band function in the ultraviolet (UV) region and errors in the optical depth calculation for Rayleigh scattering and absorption of O3, NO2, H2O, CH4, and CO2. The results showed that 1) the uncertainty of AOD retrieval by this method, which is called the approximate AOD retrieval method, might become large when the filter band function is not well designed, particularly in the UV region; 2) in the case of a large zenith observation condition, the errors will be nonnegligible if the Rayleigh scattering optical depth is calculated at a central wavelength without including filter band function; 3) the band-weighted absorption coefficients of O3 and NO2 remain nearly constant when the gas amounts change, except in the case of questionably designed band filters; and 4) these weak-absorption optical depths for H2O, CH4, and CO2 cannot be ignored in the 1020- or 1640-nm channels, where an optical depth error of 0.01−0.02 may be introduced.


2018 ◽  
Vol 39 (21) ◽  
pp. 7643-7663 ◽  
Author(s):  
K. Vijayakumar ◽  
P. C. S. Devara ◽  
David M. Giles ◽  
Brent N. Holben ◽  
S. Vijaya Bhaskara Rao ◽  
...  

2012 ◽  
Vol 12 (5) ◽  
pp. 2469-2477 ◽  
Author(s):  
C. S. Zerefos ◽  
K. Tourpali ◽  
K. Eleftheratos ◽  
S. Kazadzis ◽  
C. Meleti ◽  
...  

Abstract. This study examines the long-term variability of UV solar irradiances at 305 nm and 325 nm over selected sites in Canada, Europe and Japan. Site selection was restricted to the availability of the most complete UV spectroradiometric datasets during the period 1990–2011. The analysis includes the long-term variability of total ozone, aerosol optical depth and cloud fraction at the sites studied. The results, based on observations and modeling, suggest that over Canada, Europe and Japan the period under study can be divided into three sub-periods of scientific merit: the first period (1991–1994) is the period perturbed by the Pinatubo volcanic eruption, during which excess volcanic aerosol has enhanced the "conventional" amplification factor of UV-B at ground level by an additional factor that depends on solar elevation. The increase of the UV-B amplification factor is the result of enhanced scattering processes caused by the injection of huge amounts of volcanic aerosols during the perturbed period. The second period (1995–2006) is characterized by a 0.14% yr−1 increase in total ozone and an increasing trend in spectral irradiance by 0.94% yr−1 at 305 nm and 0.88% yr−1 at 325 nm. That paradox was caused by the significant decline of the aerosol optical depth by more than 1% yr−1 (the "brightening" effect) and the absence of any statistically significant trend in the cloud fraction. The third period (2007–2011) shows statistically significant evidence of a slowdown or even a turning point in the previously reported upward UV-B trends over Canada, Europe and Japan.


Author(s):  
Forrest M. Mims

AbstractA 30-year time series (4 Feb 1990 to 4 Feb 2020) of aerosol optical depth of the atmosphere (AOD), total precipitable water (TPW) and total column ozone has been conducted in Central Texas using simple, highly stable instruments. All three parameters in this ongoing measurement series exhibited robust annual cycles. They also responded to many atmospheric events, including the historic volcanic eruption of Mount Pinatubo (1991), a record El Niño (1998), an unprecedented biomass smoke event (1998) and the La Niña that caused the driest drought in recorded Texas history (2011). Reduced air pollution caused mean AOD to decline from 0.175 to 0.14. The AOD trend measured for 30 years by an LED sun photometer, the first of its kind, parallels the trend from 20 years of measurements by a modified Microtops II. While TPW responded to El Niño-Southern Oscillation conditions, TPW exhibited no trend over the 30 years. The TPW data compare favorably with 4.5 years of simultaneous measurements by a nearby NOAA GPS (r2 = 0.78). The 30 years of ozone measurements compare favorably with those from a series of NASA ozone satellites (r2 = 0.78). In 2016, 194 comparisons of Microtops II and world standard ozone instrument Dobson 83 at the Mauna Loa Observatory agreed within 1.9% (r2 = 0.81). The paper concludes by observing that students and citizen scientists can collect scientifically useful atmospheric data with simple sun photometers that use one or more LEDs as spectrally selective photodiodes.


2011 ◽  
Vol 28 (10) ◽  
pp. 1297-1306 ◽  
Author(s):  
Timothy A. Berkoff ◽  
Mikail Sorokin ◽  
Tom Stone ◽  
Thomas F. Eck ◽  
Raymond Hoff ◽  
...  

Abstract A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA’s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10–100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%–40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.


2010 ◽  
Vol 10 (2) ◽  
pp. 331-340 ◽  
Author(s):  
I. Ialongo ◽  
V. Buchard ◽  
C. Brogniez ◽  
G. R. Casale ◽  
A. M. Siani

Abstract. The aerosol Single Scattering Albedo (SSA) and Absorbing Aerosol Optical Depth (AAOD) at 320.1 nm are derived at Rome site by the comparison between Brewer and modelled spectra. The UVSPEC radiative transfer model is used to calculate the UV irradiances for different SSA values, taking into account as input data total ozone and Aerosol Optical Depth (AOD) obtained from Brewer spectral measurements. The accuracy in determining SSA depends on the aerosol amount and on Solar Zenith Angle (SZA) value: SSA uncertainty increases when AOD and SZA decrease. The monthly mean values of SSA and AAOD during the period January 2005–June 2008 are analysed, showing a monthly and seasonal variability. It is found that the SSA and AAOD averages are 0.80±0.08 and 0.056±0.028, respectively. AAOD retrievals are also used to quantify the error in the Ozone Monitoring Instrument (OMI) surface UV products due to absorbing aerosols, not included in the current OMI UV algorithm. OMI and Brewer UV irradiances at 324.1 nm and Erythemal Dose Rates (EDRs) under clear sky conditions, are compared as a function of AAOD. Three methods are considered to investigate on the applicability of an absorbing aerosol correction on OMI UV data at Rome site. Depending on the correction methodology, the bias value decreases from 18% to 2% for spectral irradiance at 324.1 nm and from 25% to 8% for EDR.


2016 ◽  
Author(s):  
Thomas Carlund ◽  
Natalia Kouremeti ◽  
Stelios Kazadzis ◽  
Julian Gröbner

Abstract. The determination of aerosol properties, especially the aerosol optical depth (AOD) in the UV wavelength region is of great importance to understand the climatological variability of UV radiation. However, operational retrievals of AOD at the biological most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) from Langley plot calibrations underestimate the true extra-terrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument spectral response functions also result in an apparent airmass dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore developed. Langley calibrations performed 13–14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a standard PFR, measuring AOD at 368–862 nm wavelengths with high accuracy, showed consistent results. Also very good agreement was achieved comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB are higher than the ones reported from UVA and visible AOD measuring instruments. However, the precision can be high between instruments using harmonized algorithms for ozone and Rayleigh optical depth as well as for air mass terms. For several months of comparison measurements with the UVPFR and a Brewer the root mean squared AOD differences were


Sign in / Sign up

Export Citation Format

Share Document