scholarly journals Towards imaging of atmospheric trace gases using Fabry–Pérot interferometer correlation spectroscopy in the UV and visible spectral range

2019 ◽  
Vol 12 (1) ◽  
pp. 735-747 ◽  
Author(s):  
Jonas Kuhn ◽  
Ulrich Platt ◽  
Nicole Bobrowski ◽  
Thomas Wagner

Abstract. Many processes in the lower atmosphere including transport, turbulent mixing and chemical conversions happen on timescales of the order of seconds (e.g. at point sources). Remote sensing of atmospheric trace gases in the UV and visible spectral range (UV–Vis) commonly uses dispersive spectroscopy (e.g. differential optical absorption spectroscopy, DOAS). The recorded spectra allow for the direct identification, separation and quantification of narrow-band absorption of trace gases. However, these techniques are typically limited to a single viewing direction and limited by the light throughput of the spectrometer set-up. While two-dimensional imaging is possible by spatial scanning, the temporal resolution remains poor (often several minutes per image). Therefore, processes on timescales of seconds cannot be directly resolved by state-of-the-art dispersive methods. We investigate the application of Fabry–Pérot interferometers (FPIs) for the optical remote sensing of atmospheric trace gases in the UV–Vis spectral range. By choosing a FPI transmission spectrum, which is optimised to correlate with narrow-band (ideally periodic) absorption structures of the target trace gas, column densities of the trace gas can be determined with a sensitivity and selectivity comparable to dispersive spectroscopy, using only a small number of spectral channels (FPI tuning settings). Different from dispersive optical elements, the FPI can be implemented in full-frame imaging set-ups (cameras), which can reach high spatio-temporal resolution. In principle, FPI correlation spectroscopy can be applied for any trace gas with distinct absorption structures in the UV–Vis range. We present calculations for the application of FPI correlation spectroscopy to SO2, BrO and NO2 for exemplary measurement scenarios. In addition to high sensitivity and selectivity we find that the spatio temporal resolution of FPI correlation spectroscopy can be more than 2 orders of magnitude higher than state-of-the-art DOAS measurements. As proof of concept we built a 1-pixel prototype implementing the technique for SO2 in the UV. Good agreement with our calculations and conventional measurement techniques is demonstrated and no cross sensitivities to other trace gases are observed.

2018 ◽  
Author(s):  
Jonas Kuhn ◽  
Ulrich Platt ◽  
Nicole Bobrowski ◽  
Thomas Wagner

Abstract. Many processes in the lower atmosphere including transport, turbulent mixing and chemical conversions happen on time scales of the order of seconds (e.g. at point sources). Remote sensing of atmospheric trace gases in the UV and visible spectral range (UV/Vis) commonly uses dispersive spectroscopy (e.g. Differential Optical Absorption Spectroscopy, DOAS). The recorded spectra allow for the direct identification, separation and quantification of narrow band absorption of trace gases. However, these techniques are typically limited to a single viewing direction and limited by the light throughput of the spectrometer setup. While two dimensional imaging is possible by spatial scanning, the temporal resolution remains poor (often several minutes per image). Therefore, processes on time scales of seconds cannot be directly resolved by state of the art dispersive methods. We investigate the application of Fabry-Perot Interferometers (FPIs) for the optical remote sensing of atmospheric trace gases in the UV/Vis. By choosing a FPI transmission spectrum, which is optimised to correlate with narrow band (ideally periodic) absorption structures of the target trace gas, column densities of the trace gas can be determined with a sensitivity and selectivity comparable to dispersive spectroscopy, using only a small number of spectral channels (FPI tuning settings). Different from dispersive optical elements, the FPI can be implemented in full frame imaging setups (cameras), which can reach high spatio-temporal resolution. In principle, FPI Correlation Spectroscopy can be applied for any trace gas with distinct absorption structures in the UV/Vis. We present calculations for the application of FPI Correlation Spectroscopy to SO2, BrO and NO2 for exemplary measurement scenarios. Besides high sensitivity and selectivity we find that the spatio temporal resolution of FPI Correlation Spectroscopy can be more than two orders of magnitude higher than state of the art DOAS measurements. As proof of concept we built a one-pixel prototype implementing the technique for SO2 in the UV. Good agreement with our calculations and conventional measurement techniques are demonstrated and no cross sensitivities to other trace gases are observed.


2021 ◽  
Vol 14 (1) ◽  
pp. 295-307
Author(s):  
Christopher Fuchs ◽  
Jonas Kuhn ◽  
Nicole Bobrowski ◽  
Ulrich Platt

Abstract. We present first measurements with a novel imaging technique for atmospheric trace gases in the UV spectral range. Imaging Fabry–Pérot interferometer correlation spectroscopy (IFPICS) employs a Fabry–Pérot interferometer (FPI) as the wavelength-selective element. Matching the FPI's distinct, periodic transmission features to the characteristic differential absorption structures of the investigated trace gas allows us to measure differential atmospheric column density (CD) distributions of numerous trace gases with high spatial and temporal resolution. Here we demonstrate measurements of sulfur dioxide (SO2), while earlier model calculations show that bromine monoxide (BrO) and nitrogen dioxide (NO2) are also possible. The high specificity in the spectral detection of IFPICS minimises cross-interferences to other trace gases and aerosol extinction, allowing precise determination of gas fluxes. Furthermore, the instrument response can be modelled using absorption cross sections and a solar atlas spectrum from the literature, thereby avoiding additional calibration procedures, e.g. using gas cells. In a field campaign, we recorded the temporal CD evolution of SO2 in the volcanic plume of Mt. Etna, with an exposure time of 1 s and 400×400 pixel spatial resolution. The temporal resolution of the time series was limited by the available non-ideal prototype hardware to about 5.5 s. Nevertheless, a detection limit of 2.1×1017 molec cm−2 could be reached, which is comparable to traditional and much less selective volcanic SO2 imaging techniques.


2021 ◽  
Author(s):  
Leon Kuhn ◽  
Jonas Kuhn ◽  
Thomas Wagner ◽  
Ulrich Platt

Abstract. Monitoring of NO2 is in the interest of public health, because NO2 contributes to the decline of air quality in many urban regions. Its abundance can be a direct cause of asthmatic and cardiovascular diseases and plays a significant part in forming other pollutants such as ozone or particulate matter. Spectroscopic methods have proven to be reliable and of high selectivity by utilizing the characteristic spectral absorption signature of trace gasses such as NO2. However, they typically lack the spatio-temporal resolution required for real-time imaging measurements of NO2 emissions. We propose imaging measurements of NO2 in the visible spectral range using a novel instrument, an NO2 camera based on the principle of Gas Correlation Spectroscopy (GCS). For this purpose two gas cells (cuvettes) are placed in front of two camera modules. One gas cell is empty, while the other is filled with a high concentration of the target gas. The filled gas cell operates as a non-dispersive spectral filter to the incoming light, maintaining the two-dimensional imaging capability of the sensor arrays. NO2 images are generated on the basis of the signal ratio between the two images in the spectral window between 430 and 445 nm, where the NO2 absorption cross section is strongly structured. The capabilities and limits of the instrument are investigated in a numerical forward model. The predictions of this model are verified in a proof-of-concept measurement, in which the column densities in specially prepared reference cells were measured with the NO2 camera and a conventional DOAS instrument. Finally, results from measurements at a large power plant, the Großkraftwerk Mannheim (GKM), are presented. NO2 column densities of the plume emitted from a GKM chimney are quantified at a spatio-temporal resolution of 1/6 frames per second (FPS) and 0.92 m × 0.92 m. A detection limit of 1.89 · 1016 molec cm−2 was reached. An NO2 mass flux of Fm = (7.41 ± 4.23) kg h−1 was estimated on the basis of momentary wind speeds obtained from consecutive images. The camera results are verified by comparison to NO2 slant column densities obtained from elevation scans with a MAX-DOAS instrument. The instrument prototype is highly portable and cost-efficient at building costs of below 2,000 Euro.


2020 ◽  
Author(s):  
Leon Kuhn ◽  
Jonas Kuhn ◽  
Thomas Wagner ◽  
Ulrich Platt

<p>Imaging of atmospheric trace gases is becoming an increasingly important field of remote sensing. Conventional methods (like imaging-DOAS) typically use dispersive elements and wavelength mapping (at moderate to high spectral resolution) and need intricate optical setup. Therefore, they are limited in spatio-temporal resolution.</p><p>Some atmospheric trace gases can, however, be detected only by using a few carefully selected spectral channels, specific to the selected trace gas. These can be filtered using non-dispersive spectral filters without spatial mapping of continuous spectra, vastly increasing the spatio-temporal resolution. This has become a routine in volcanic SO<sub>2</sub> flux analysis, where band-pass filters provide the spectral filtering.</p><p>We propose fast imaging of spatial Nitrogen Dioxide (NO<sub>2</sub>) distributions employing Gas Correlation Spectroscopy (GCS) in the visible wavelength range. Two spectral channels are used, one with a gas cell that is filled with a high amount of NO<sub>2</sub> in the light path and one without. An additional band-pass filter preselects a wavelength range containing structured and strong NO<sub>2</sub> absorption (e.g. 430 - 450 nm). The NO<sub>2</sub> containing gas cell serves as a NO<sub>2</sub> specific spectral filter, almost blocking the light at wavelengths of the strong NO<sub>2</sub> absorption bands within the preselected wavelength range. Absorption by atmospheric NO<sub>2</sub> has therefore a lower impact on the channel with gas cell compared to the channel without gas cell. This difference is used to generate NO<sub>2</sub> images.</p><p>NO<sub>2</sub> plays a major role in urban air pollution, where it is primarily emitted by point sources (power plants, vehicle internal combustion engines), before undergoing chemical conversions. The corresponding spatial gradients can neither be resolved with the established in-situ techniques nor with the widely used DOAS remote sensing method.</p><p>Recent advances in the physical implementation of a GCS-based NO<sub>2</sub> camera suggest, that the quality of the measurement may be vastly enhanced in a two-detector (two-camera) set-up. Here, individual cameras are used for the two spectral channels. Not only does this double the photon budget available, but it also allows for synchronized exposure in both channels. This is critical for the quality of the measurement, since dynamic gas or intensity features on time scales smaller than the exposure delay of a one-camera system can induce strong false signals.</p><p>A proof of concept measurement was carried out, where test cells with NO<sub>2</sub> column densities ranging from 1E16 to 4E18 molecules cm<sup>-2</sup> were measured both with DOAS and our camera. The results coincided within their uncertainties and allow for camera calibration based on an instrument forward model.</p>


2021 ◽  
Author(s):  
Alexander Nies ◽  
Christopher Fuchs ◽  
Jonas Kuhn ◽  
Nicole Bobrowski ◽  
Ulrich Platt

<p>Imaging of atmospheric trace gases in the UV and visible wavelength range provides insight into the spatial distribution of physical and chemical processes in the atmosphere. Instruments for this purpose ideally combine a high spatio-temporal resolution with a high trace gas selectivity. In addition, they have to be built robust and compact for field measurements.</p><p>Atmospheric trace gas remote sensing by Differential Optical Absorption Spectroscopy (DOAS) is common and allows to measure several trace gases simultaneously with high selectivity and sensitivity. On the downside, image acquisition requires spatial scanning as for instance implemented in so-called hyperspectral cameras (also known as Imaging DOAS, IDOAS). This, however, results in reduced spatio-temporal resolution. Another approach to trace gas imaging is to use band pass filters, as for example in SO<sub>2</sub> cameras, which has the benefit of fast image acquisition combined with a high spatial resolution, but this advantage comes at the expense of low spectral sensitivity. Hence, only very high trace gas abundances can be reliably quantified, and the measurement is vulnerable to broadband interferences e.g. by aerosol.</p><p>We report an imaging technique combining the IDOAS and filter-based cameras’ advantages by utilizing the periodic transmission features of a Fabry-Perot-Interferometer (FPI). The FPI is tuned to two positions, so that its transmission either correlates or anti-correlates with the approximately periodic absorption structures of the target trace gas. From the measured intensities the differential optical density and the column density of the trace gas can be obtained with a high selectivity. Compared to IDOAS (or hyperspectral cameras) we only measure two different wavelength channels, however with maximum trace gas specific information. This reduces the amount of recorded data by at least two orders of magnitude for the same measurement resolution. This can be crucial for the feasibility of field measurements.</p><p>We present a compact and field-ready Imaging-FPI-Correlation-Spectroscopy (IFPICS) prototype. The FPI settings (or different FPIs) can be adapted to detect several different trace gases, our set-ups have been optimized for sulphur dioxide (SO<sub>2</sub>), bromine monoxide (BrO) or formaldehyde (HCHO).</p><p>We anticipate from laboratory studies using scattered skylight and HCHO cuvettes a detection limit of 4.7x10<sup>16</sup> molec cm<sup>-2</sup> for an image of about 90x90 pixel and an integration time of 6s. Because of the similar absorption features of BrO we expect a detection limit of 1.6x10<sup>14 </sup>molec cm<sup>^-2</sup>. Additionally, an outlook on the application of BrO imaging in volcanic plumes is given.</p><p> </p>


2021 ◽  
Author(s):  
Christopher Fuchs ◽  
Jonas Kuhn ◽  
Nicole Bobrowski ◽  
Ulrich Platt

<p>Variations in volcanic trace gas composition and fluxes are a valuable indicator for changes in magmatic systems and therefore allow monitoring of the volcanic activity. An established method to measure trace gas emissions is to use remote sensing techniques like, for example, Differential Optical Absorption Spectroscopy (DOAS) and more recently SO<sub>2</sub>-cameras, that can quantify volcanic sulphur dioxide (SO<sub>2</sub>) emissions during quiescent degassing and eruptive phases, making it possible to correlate fluxes with volcanic activity. </p><p>We present flux measurements of volcanic SO<sub>2</sub> emissions based on the novel remote sensing technique of Imaging Fabry-Pérot Interferometer Correlation Spectroscopy (IFPICS) in the UV spectral range. The basic principle of IFPICS lies in the application of an Fabry-Pérot Interferometer (FPI) as wavelength selective element. The FPIs periodic transmission profile is matched to the periodic spectral absorption features of SO<sub>2</sub>, resulting in high spectral information for its detection. This technique yields a higher trace gas selectivity and sensitivity than imaging approaches based on interference filters, e.g. SO<sub>2</sub>-cameras and an increased spatio-temporal resolution over spectroscopic imaging techniques, e.g. imaging DOAS. Hence, IFPICS shows reduced cross sensitivities to broadband absorption (e.g. to ozone, aerosols), which allows the application to weaker volcanic SO<sub>2</sub> emitters and increases the range of possible atmospheric conditions. It further raises the possibility to apply IFPICS to other trace gas species like, for example, bromine monoxide, that still can be characterized with a high spatial and temporal resolution (< 1 HZ).</p><p>In October 2020, we acquired SO<sub>2</sub> column density distribution images of Mt Etna volcanic plume with a detection limit of 2x10<sup>17</sup> molec cm<sup>-2</sup>, 1 s integration time, 400x400 pixel spatial, and 0.3 Hz temporal resolution.  We compare the SO<sub>2</sub> fluxes retrieved by IFPICS with simultaneous flux measurements using the mutli-axis DOAS technique.</p>


The Analyst ◽  
2018 ◽  
Vol 143 (19) ◽  
pp. 4699-4706 ◽  
Author(s):  
Kaiyuan Zheng ◽  
Chuantao Zheng ◽  
Zidi Liu ◽  
Qixin He ◽  
Qiaoling Du ◽  
...  

The majority of broadband cavity-enhanced systems are used to detect trace gas species in the visible spectral range.


2021 ◽  
Author(s):  
Clément Pivard ◽  
Sandrine Galtier ◽  
Patrick Rairoux

<p>The development of increasingly sensitive and robust instruments and new methodologies are essential to improve our understanding of the Earth’s climate and air pollution. In this context, Dual-Comb spectroscopy (DCS) appears as an emerging spectroscopy methodology to detect in situ, without air-sampling, atmospheric trace-gases.</p><p>DCS is a Fourier-transform type experiment that takes advantage of mode-locked femtosecond (fs) pulses. This methodology appears highly relevant for atmosphere remote-sensing studies because of its very fast acquisition rate (>kHz) that reduces the impact of atmospheric turbulences on the retrieved spectra. DCS has been successfully applied in near-infrared (NIR) spectral ranges for atmospheric greenhouse gas monitoring (water vapor, carbon dioxide, and methane) [1-2].</p><p>Its implementation in the UV range would offer a new spectroscopic intrumentation to target the most reactive species of the atmosphere (OH, HONO, BrO...) as they have their greatest absorption cross-sections in the UV range. UV-DCS would therefore be an answer to the lack of variability of today operationnal and in situ monitoring instrument for those reactive molecules.</p><p>We will present a potential light source for remote sensing UV-DCS and discuss the degree of immunity of UV-DCS to atmospheric turbulences. We will show to which extent the characteristics of the currently available UV sources are compatible with the unambiguous identification of UV absorbing gases by UV-DCS. We will finally present the performances of UV-DCS in terms of concentration detection limit for several UV absorbing molecules (OH, BrO, NO<sub>2</sub>, OClO, HONO, CH<sub>2</sub>O, SO<sub>2</sub>). This sensitivity study has been recently published [3] and the main results will be presented.</p><p> </p><p>[1] Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.;Petron, G.; Sweeney, C.; et al. « Frequency-comb-based remote sensing of greenhouse gases over kilometer air Paths ». Optica 1, p. 290–298 (2014)</p><p>[2] Oudin, J.; Mohamed, A.K.; Hébert, P.J. "IPDA LIDAR measurements on atmospheric CO2 and H2O using dual comb spectroscopy," Proc. SPIE 11180, International Conference on Space Optics — ICSO 2018, p. 111802N (12 July 2019)</p><p>[3] Galtier, S.; Pivard, C.; Rairoux, P. Towards DCS in the UV Spectral Range for Remote Sensing of Atmospheric Trace Gases. Remote Sens., 12, p.3444 (2020)</p>


2020 ◽  
Author(s):  
Ann Carine Vandaele ◽  
Arianna Piccialli ◽  
Ian R. Thomas ◽  
Frank Daerden ◽  
Shohei Aoki ◽  
...  

<p>The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter has been designed to investigate the composition of Mars' atmosphere, with a particular focus on trace gases, clouds and dust probing the ultraviolet and infrared regions covering large parts of the 0.2-4.3 µm spectral range [1,2].</p><p>Since its arrival at Mars in April 2018, NOMAD performed solar occultation, nadir and limb observations dedicated to the determination of the composition and structure of the atmosphere. Here we report on the different discoveries highlighted by the instrument: investigation of the 2018 Global dust storm and its impact on the water uplifting and escape, its impact on temperature increases within the atmosphere as inferred by GCM modeling and observations, the dust and ice clouds distribution during the event, ozone measurements, dayglow observations and in general advances in the analysis of the spectra recorded by the three channels of NOMAD.</p><p>References</p><p>[1] Vandaele, A.C., et al., 2015. Planet. Space Sci. 119, 233-249.</p><p>[2] Vandaele et al., 2018. Space Sci. Rev., 214:80, doi.org/10.1007/s11214-11018-10517-11212.</p>


Sign in / Sign up

Export Citation Format

Share Document