scholarly journals Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer

2021 ◽  
Vol 14 (12) ◽  
pp. 7707-7728
Author(s):  
Tyler Wizenberg ◽  
Kimberly Strong ◽  
Kaley Walker ◽  
Erik Lutsch ◽  
Tobias Borsdorff ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) provides a daily, spatially resolved (initially 7×7 km2, upgraded to 7×5.6 km2 in August 2019) global dataset of CO columns; however, due to the relative sparseness of reliable ground-based data sources, it can be challenging to characterize the validity and accuracy of satellite data products in remote regions such as the high Arctic. In these regions, satellite intercomparisons can supplement model- and ground-based validation efforts and serve to verify previously observed differences. In this paper, we compare the CO products from TROPOMI, the Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer (FTS), and a high-Arctic ground-based FTS located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80.05∘ N, 86.42∘ W). A global comparison of TROPOMI reference profiles scaled by the retrieved total column with ACE-FTS CO partial columns for the period from 28 November 2017 to 31 May 2020 displays excellent agreement between the two datasets (R=0.93) and a small relative bias of -0.83±0.26% (bias ± standard error of the mean). Additional comparisons were performed within five latitude bands: the north polar region (60 to 90∘ N), northern mid-latitudes (20 to 60∘ N), the equatorial region (20∘ S to 20∘ N), southern mid-latitudes (60 to 20∘ S), and the south polar region (90 to 60∘ S). Latitudinal comparisons of the TROPOMI and ACE-FTS CO datasets show strong correlations ranging from R=0.93 (southern mid-latitudes) to R=0.86 (equatorial region) between the CO products but display a dependence of the mean differences on latitude. Positive mean biases of 7.93±0.61 % and 7.21±0.52 % were found in the northern and southern polar regions, respectively, while a negative bias of -9.41±0.55% was observed in the equatorial region. To investigate whether these differences are introduced by cloud contamination, which is reflected in the TROPOMI averaging kernel shape, the latitudinal comparisons were repeated for cloud-covered pixels and clear-sky pixels only, as well as for the unsmoothed and smoothed cases. Clear-sky pixels were found to be biased higher with poorer correlations on average than clear+cloudy scenes and cloud-covered scenes only. Furthermore, the latitudinal dependence on the biases was observed in both the smoothed and unsmoothed cases. To provide additional context to the global comparisons of TROPOMI with ACE-FTS in the Arctic, both satellite datasets were compared against measurements from the ground-based PEARL-FTS. Comparisons of TROPOMI with smoothed PEARL-FTS total columns in the period of 3 March 2018 to 27 March 2020 display a strong correlation (R=0.88); however, a positive mean bias of 14.7±0.16 % was also found. A partial column comparison of ACE-FTS with the PEARL-FTS in the period from 25 February 2007 to 18 March 2020 shows good agreement (R=0.79) and a mean positive bias of 7.89±0.21 % in the ACE-FTS product relative to the ground-based FTS. The magnitude and sign of the mean relative differences are consistent across all intercomparisons in this work, as well as with recent ground-based validation efforts, suggesting that the current TROPOMI CO product exhibits a positive bias in the high-Arctic region. However, the observed bias is within the TROPOMI mission accuracy requirement of ±15 %, providing further confirmation that the data quality in these remote high-latitude regions meets this specification.

2021 ◽  
Author(s):  
Tyler Wizenberg ◽  
Kimberly Strong ◽  
Kaley Walker ◽  
Erik Lutsch ◽  
Tobias Borsdorff ◽  
...  

Abstract. ACE/TROPOMI Abstract for AMT submission The TROPOspheric Monitoring Instrument (TROPOMI) provides a daily, spatially-resolved (initially 7 × 7 km2, upgraded to 7 × 5.6 km2 in August 2019) global data set of CO columns, however, due to the relative sparseness of reliable ground-based data sources, it can be challenging to characterize the validity and accuracy of satellite data products in remote regions such as the high Arctic. In these regions, satellite inter-comparisons can supplement model- and ground-based validation efforts and serve to verify previously observed differences. In this paper, we compare the CO products from TROPOMI, the Atmospheric Chemistry Experiment (ACE) Fourier Transform Spectrometer (FTS), and a high-Arctic ground-based FTS located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80.05° N, 86.42° W). A global comparison of TROPOMI reference profiles scaled by the retrieved total column with ACE-FTS CO partial columns for the period from 10 November 2017 to 31 May 2020 displays excellent agreement between the two data sets (R = 0.93), and a small relative bias of −0.68 ± 0.25 % (bias ± standard error). Additional comparisons were performed within five latitude bands; the north Polar region (60° N to 90° N), northern Mid-latitudes (20° N to 60° N), the Equatorial region (20° S to 20° N), southern Mid-latitudes (60° S to 20° S), and the south Polar region (90° S to 60° S). Latitudinal comparisons of the TROPOMI and ACE-FTS CO datasets show strong correlations ranging from R = 0.93 (southern Mid-latitudes) to R = 0.85 (Equatorial region) between the CO products, but display a dependence of the mean differences on latitude. Positive mean biases of 7.92 ± 0.58 % and 7.98 ± 0.51 % were found in the northern and southern Polar regions, respectively, while a negative bias of −9.16 ± 0.55 % was observed in the Equatorial region. To investigate whether these differences are introduced by cloud contamination which is reflected in the TROPOMI averaging kernel shape, the latitudinal comparisons were repeated for cloud-covered pixels and clear-sky pixels only, and for the unsmoothed and smoothed cases. Clear-sky pixels were found to be biased higher with poorer correlations on average than clear+cloudy scenes and cloud-covered scenes only. Furthermore, the latitudinal dependence on the biases was observed in both the smoothed and unsmoothed cases. To provide additional context to the global comparisons of TROPOMI with ACE-FTS in the Arctic, both satellite data sets were compared against measurements from the ground-based PEARL-FTS. Comparisons of TROPOMI with smoothed PEARL-FTS total columns in the period of 3 March 2018 to 27 March 2020 display a strong correlation (R = 0.88), however a positive mean bias of 14.3 ± 0.16 % was also found. A partial column comparison of ACE-FTS with the PEARL-FTS in the period from 25 February 2007 to 18 March 2020 shows good agreement (R = 0.82), and a mean positive bias of 9.83 ± 0.22 % in the ACE-FTS product relative to the ground-based FTS. The magnitude and sign of the mean relative differences are consistent across all inter-comparisons in this work, as well as with recent ground-based validation efforts, suggesting that current TROPOMI CO product exhibits a positive bias in the high-Arctic region. However, the observed bias is within the TROPOMI mission accuracy requirement of ±15 %, providing further confirmation that the data quality in these remote high-latitude regions meets this specification.


2006 ◽  
Vol 6 (8) ◽  
pp. 2355-2366 ◽  
Author(s):  
G. Dufour ◽  
R. Nassar ◽  
C. D. Boone ◽  
R. Skelton ◽  
K. A. Walker ◽  
...  

Abstract. From January to March 2005, the Atmospheric Chemistry Experiment high resolution Fourier transform spectrometer (ACE-FTS) on SCISAT-1 measured many of the changes occurring in the Arctic (50–80° N) lower stratosphere under very cold winter conditions. Here we focus on the partitioning between the inorganic chlorine reservoirs HCl and ClONO2 and their activation into ClO. The simultaneous measurement of these species by the ACE-FTS provides the data needed to follow chlorine activation during the Arctic winter and the recovery of the Cl-reservoir species ClONO2 and HCl. The time evolution of HCl, ClONO2 and ClO as well as the partitioning between the two reservoir molecules agrees well with previous observations and with our current understanding of chlorine activation during Arctic winter. The results of a chemical box model are also compared with the ACE-FTS measurements and are generally consistent with the measurements.


2008 ◽  
Vol 8 (13) ◽  
pp. 3529-3562 ◽  
Author(s):  
M. A. Wolff ◽  
T. Kerzenmacher ◽  
K. Strong ◽  
K. A. Walker ◽  
M. Toohey ◽  
...  

Abstract. The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.


2020 ◽  
Vol 12 (6) ◽  
pp. 917
Author(s):  
Tomi Karppinen ◽  
Otto Lamminpää ◽  
Simo Tukiainen ◽  
Rigel Kivi ◽  
Pauli Heikkinen ◽  
...  

We analyzed the vertical distribution of atmospheric methane (CH 4 ) retrieved from measurements by ground-based Fourier Transform Spectrometer (FTS) instrument in Sodankylä, Northern Finland. The retrieved dataset covers 2009–2018. We used a dimension reduction retrieval method to extract the profile information, since each measurement contains around three pieces of information about the profile shape between 0 and 40 km. We compared the retrieved profiles against Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite measurements and AirCore balloon-borne profile measurements. Additional comparison at the lowest tropospheric layer was done against in-situ measurements from a 50-m-high mast. In general, the ground-based FTS and ACE-FTS profiles agreed within 10% below 20 km and within 30% in the stratosphere between 20 and 40 km. Our method was able to accurately capture reduced methane concentrations inside the polar vortex in the Arctic stratosphere. The method produced similar trend characteristics as the reference instruments even when a static prior profile was used. Finally, we analyzed the time series of the CH 4 profile datasets and estimated the trend using the dynamic linear model (DLM).


2009 ◽  
Vol 26 (7) ◽  
pp. 1328-1340 ◽  
Author(s):  
Rebecca L. Batchelor ◽  
Kimberly Strong ◽  
Rodica Lindenmaier ◽  
Richard L. Mittermeier ◽  
Hans Fast ◽  
...  

Abstract A new Bruker IFS 125HR Fourier transform spectrometer has been installed at the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada (80.05°N, 86.42°W). This instrument will become the Network for the Detection of Atmospheric Composition Change’s (NDACC’s) primary instrument at Eureka, replacing the existing Bomem DA8 Fourier transform spectrometer, and will operate throughout the sunlit parts of the year. This paper introduces the new instrument and describes the retrieval procedure, including a comprehensive error analysis. Total columns of O3, HCl, HF, HNO3, N2O, CH4, and CO are presented for the first full year of measurements (2007). Perturbations in the total column resulting from the presence of the Arctic polar vortex over Eureka and the chemical processes within it are visible, as are annual cycles driven by photochemistry and dynamics. Enhancements in the CO total column resulting from specific biomass burning smoke events can also be seen. An intercomparison between the existing Bomem DA8 and the new Bruker IFS 125HR was carried out in July 2007 and is presented here. The total columns derived from the two instruments are shown to be in excellent agreement, with mean differences for all gases of less than 2.3%.


1987 ◽  
Vol 33 (114) ◽  
pp. 195-199 ◽  
Author(s):  
Martin O. Jeffries ◽  
H. Roy Krouse

AbstractSnow-pack along the land-fast ice fringe off the north coast of Ellesmere Island was generally characterized by depth-hoar overlain by dense snow and wind slab. Mean snow depth in the study area was 0.54 m (1982-85) and the mean δ18O value of the snow-pack was -31.3˚/00. Isotope data were not obtained previously for this geographic region and, therefore, complement a previous study of δ18O variations in High Arctic snow (Koerner, 1979). The data are consistent with an Arctic Ocean moisture source. The δ18O profiles show seasonal variations, with winter snow being more depleted in 18O than fall and spring snow. However, the δ18O profiles are dominated by a trend to higher δ18O values with increasing depth. This is attributed to a decrease in δ18O values as condensation temperatures fall during the autumn-winter accumulation period. During this time, there is also a change from relatively open to almost complete ice cover in the Arctic Ocean. The change in evaporation conditions and consequent effect on δ values gives rise to a sharp discontinuity in the δ18O profiles and a bi-modal δ18O frequency distribution. The bi-modal distribution is reinforced by a secondary isotope fractionation that occurs during depth-hoar formation. This isotope effect leads to a wider δ18O range but does not significantly alter the mean δ18O value.


2008 ◽  
Vol 8 (1) ◽  
pp. 2429-2512 ◽  
Author(s):  
M. A. Wolff ◽  
T. Kerzenmacher ◽  
K. Strong ◽  
K. A. Walker ◽  
M. Toohey ◽  
...  

Abstract. The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv (±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within ±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.


1987 ◽  
Vol 33 (114) ◽  
pp. 195-199 ◽  
Author(s):  
Martin O. Jeffries ◽  
H. Roy Krouse

AbstractSnow-pack along the land-fast ice fringe off the north coast of Ellesmere Island was generally characterized by depth-hoar overlain by dense snow and wind slab. Mean snow depth in the study area was 0.54 m (1982-85) and the mean δ18O value of the snow-pack was -31.3˚/00. Isotope data were not obtained previously for this geographic region and, therefore, complement a previous study of δ18O variations in High Arctic snow (Koerner, 1979). The data are consistent with an Arctic Ocean moisture source. The δ18O profiles show seasonal variations, with winter snow being more depleted in18O than fall and spring snow. However, the δ18O profiles are dominated by a trend to higher δ18O values with increasing depth. This is attributed to a decrease in δ18O values as condensation temperatures fall during the autumn-winter accumulation period. During this time, there is also a change from relatively open to almost complete ice cover in the Arctic Ocean. The change in evaporation conditions and consequent effect on δ values gives rise to a sharp discontinuity in the δ18O profiles and a bi-modal δ18O frequency distribution. The bi-modal distribution is reinforced by a secondary isotope fractionation that occurs during depth-hoar formation. This isotope effect leads to a wider δ18O range but does not significantly alter the mean δ18O value.


2013 ◽  
Vol 6 (3) ◽  
pp. 741-749 ◽  
Author(s):  
A. Moss ◽  
R. J. Sica ◽  
E. McCullough ◽  
K. Strawbridge ◽  
K. Walker ◽  
...  

Abstract. The Canadian Network for the Detection of Atmospheric Change and Environment Canada DIAL lidar located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, has been upgraded to measure water vapour mixing ratio profiles. The lidar is capable of measuring water vapour in the dry Arctic atmosphere up to the tropopause region. Measurements were obtained in the February to March polar sunrise during 2007, 2008 and 2009 as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign. Before such measurements can be used to address important questions in understanding dynamics and chemistry, the lidar measurements must be calibrated against an independent determination of water vapour. Here, radiosonde measurements of relative humidity have been used to empirically calibrate the lidar measurements. It was found that the calibration varied significantly between each year's campaign. However, the calibration of the lidar during an individual polar sunrise campaign agrees on average with the local radiosonde measurements to better than 12%. To independently validate the calibration of the lidar derived from the radiosondes, comparisons are made between the calibrated lidar measurements and water vapour measurements from the ACE satellite-borne Fourier Transform Spectrometer (ACE-FTS). The comparisons between the lidar and satellite-borne spectrometer for both a campaign average and single overpasses show favourable agreement between the two instruments and help validate the lidar's calibration. The 39 nights of high-Arctic water vapour measurements obtained offer the most detailed high spatial-temporal resolution measurement set available for understanding this time of transition from the long polar night to polar day.


1996 ◽  
Vol 50 (5) ◽  
pp. 583-587 ◽  
Author(s):  
Justus Notholt ◽  
Klaus Pfeilsticker

Spectra of the atmosphere have been measured in the near-UV and visible spectral range for the first time with a Fourier transform spectrometer using direct and zenith scattered sunlight. The observations were performed in the Arctic at 79°N, 12°E in 1994. Spectra were recorded in the wavelength range 310 to 1100 nm up to a resolution of about 0.0008 nm. The use of the FT spectrometer allowed the study of atmospheric trace gas concentrations in the whole spectral region between 500 and 31,000 cm−1 (0.3–20 μm) with one instrument by only changing the beamsplitters and choosing different detectors. At a spectral resolution of 1.2 nm, the atmospheric absorptions of O3 around 505 nm and NO2 at 448 nm were analyzed. Results are compared with observations performed in the infrared with the same instrument, with TOMS data and with ozone balloon data.


Sign in / Sign up

Export Citation Format

Share Document