scholarly journals In-situ sounding of radiation flux profiles through the Arctic lower troposphere

Author(s):  
Ralf Becker ◽  
Marion Maturilli ◽  
Rolf Philipona ◽  
Klaus Behrens

Abstract. In-situ profiles of all four net radiation components were obtained at Ny Ålesund/Svalbard (78.9° N, 11.9° E) in the time frame May 04–21, 2015. Measurements could be performed using adapted high quality instrumentation classified as secondary standard carried by a tethered balloon system. Balloon lifted measurements of albedo under clear sky conditions demonstrate the altitude dependence of this parameter over heterogeneous terrain. Depending on the surface composition within the sensor's footprint, the albedo over predominantly snow covered surfaces was found to decrease to 53.4 % and 35.8 % compared to 73.1 % and 78.8 % measured with near surface references, respectively. Albedo profiles show an all-sky maximum at 150 m above surface level, and an averaged vertical change rate of −2.1 %/100 m (clear sky) and −3.4 %/100 m (overcast) above. Profiling of arctic low-level clouds reveals distinct vertical gradients in all radiation fluxes but longwave upward. Observed radiative cooling at cloud top with heating rates of −53 to −84 K/d in subsequent observations tend to be lower than suggested by 1-D simulations.

2015 ◽  
Vol 9 (1) ◽  
pp. 495-539
Author(s):  
M. Niwano ◽  
T. Aoki ◽  
S. Matoba ◽  
S. Yamaguchi ◽  
T. Tanikawa ◽  
...  

Abstract. The surface energy balance (SEB) from 30 June to 14 July 2012 at site SIGMA (Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic)-A, (78°03' N, 67°38' W; 1490 m a.s.l.) on the northwest Greenland Ice Sheet (GrIS) was investigated by using in situ atmospheric and snow measurements, as well as numerical modeling with a one-dimensional, multi-layered, physical snowpack model called SMAP (Snow Metamorphism and Albedo Process). At SIGMA-A, remarkable near-surface snowmelt and continuous heavy rainfall (accumulated precipitation between 10 and 14 July was estimated to be 100 mm) were observed after 10 July 2012. Application of the SMAP model to the GrIS snowpack was evaluated based on the snow temperature profile, snow surface temperature, surface snow grain size, and shortwave albedo, all of which the model simulated reasonably well. However, comparison of the SMAP-calculated surface snow grain size with in situ measurements during the period when surface hoar with small grain size was observed on-site revealed that it was necessary to input air temperature, relative humidity, and wind speed data from two heights to simulate the latent heat flux into the snow surface and subsequent surface hoar formation. The calculated latent heat flux was always directed away from the surface if data from only one height were input to the SMAP model, even if the value for roughness length of momentum was perturbed between the possible maximum and minimum values in numerical sensitivity tests. This result highlights the need to use two-level atmospheric profiles to obtain realistic latent heat flux. Using such profiles, we calculated the SEB at SIGMA-A from 30 June to 14 July 2012. Radiation-related fluxes were obtained from in situ measurements, whereas other fluxes were calculated with the SMAP model. By examining the components of the SEB, we determined that low-level clouds accompanied by a significant temperature increase played an important role in the melt event observed at SIGMA-A. These conditions induced a remarkable surface heating via cloud radiative forcing in the polar region.


2011 ◽  
Vol 11 (9) ◽  
pp. 4491-4503 ◽  
Author(s):  
J. Worden ◽  
D. Noone ◽  
J. Galewsky ◽  
A. Bailey ◽  
K. Bowman ◽  
...  

Abstract. The Aura satellite Tropospheric Emission Spectrometer (TES) instrument is capable of measuring the HDO/H2O ratio in the lower troposphere using thermal infrared radiances between 1200 and 1350 cm−1. However, direct validation of these measurements is challenging due to a lack of in situ measured vertical profiles of the HDO/H2O ratio that are spatially and temporally co-located with the TES observations. From 11 October through 5 November 2008, we undertook a campaign to measure HDO and H2O at the Mauna Loa observatory in Hawaii for comparison with TES observations. The Mauna Loa observatory is situated at 3.1 km above sea level or approximately 680 hPa, which is approximately the altitude where the TES HDO/H2O observations show the most sensitivity. Another advantage of comparing in situ data from this site to estimates derived from thermal IR radiances is that the volcanic rock is heated by sunlight during the day, thus providing significant thermal contrast between the surface and atmosphere; this thermal contrast increases the sensitivity to near surface estimates of tropospheric trace gases. The objective of this inter-comparison is to better characterize a bias in the TES HDO data, which had been previously estimated to be approximately 5 % too high for a column integrated value between 850 hPa and 500 hPa. We estimate that the TES HDO profiles should be corrected downwards by approximately 4.8 % and 6.3 % for Versions 3 and 4 of the data respectively. These corrections must account for the vertical sensitivity of the TES HDO estimates. We estimate that the precision of this bias correction is approximately 1.9 %. The accuracy is driven by the corrections applied to the in situ HDO and H2O measurements using flask data taken during the inter-comparison campaign and is estimated to be less than 1 %. Future comparisons of TES data to accurate vertical profiles of in situ measurements are needed to refine this bias estimate.


2012 ◽  
Vol 12 (15) ◽  
pp. 6741-6755 ◽  
Author(s):  
J. Messerschmidt ◽  
H. Chen ◽  
N. M. Deutscher ◽  
C. Gerbig ◽  
P. Grupe ◽  
...  

Abstract. The in situ boundary layer measurement site in Białystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements have been recorded nearly continuously in clear and partially cloudy conditions since March 2009. Here, the FTS measurements are compared with the collocated tall tower data. Additionally, simulations of the Jena CO2 inversion model are evaluated with the Białystok measurement facilities. The simulated seasonal CO2 cycle is slightly overestimated by a mean difference of 1.2 ppm ± 0.9 ppm (1σ) in comparison with the FTS measurements. CO2 concentrations at the surface, measured at the tall tower (5 m, 90 m, 300 m), are slightly underestimated by −1.5 ppm, −1.6 ppm, and −0.7 ppm respectively during the day and by −9.1 ppm, −5.9 ppm, and −1.3 ppm during the night. The comparison of the simulated CO2 profiles with low aircraft profiles shows a slight overestimation of the lower troposphere (by up to 1 ppm) and an underestimation in near-surface heights until 800 m (by up to 2.5 ppm). In an appendix the automated FTS observatory, including the hardware components and the automation software, is described in its basics.


2017 ◽  
Vol 30 (12) ◽  
pp. 4463-4475 ◽  
Author(s):  
Liwei Jia ◽  
Xiaosong Yang ◽  
Gabriel Vecchi ◽  
Richard Gudgel ◽  
Thomas Delworth ◽  
...  

This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over Northern Hemisphere extratropics both in the observations and climate model predictions. A suite of numerical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of the stratosphere in seasonal predictive skill of extratropical near-surface land temperature. It is shown that most of the lead-0-month spring predictive skill of land temperature over extratropics, particularly over northern Eurasia, stems from stratospheric initialization. It is further revealed that this predictive skill of extratropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical connection between the stratosphere and troposphere is also demonstrated by the significant correlation between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the stratospheric zonal wind anomalies to the lower troposphere.


2012 ◽  
Vol 9 (2) ◽  
pp. 1009-1043 ◽  
Author(s):  
G. Dybkjær ◽  
R. Tonboe ◽  
J. Høyer

Abstract. The ice surface temperature (IST) is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions are prevailing during spring in the Arctic while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveal that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C) and that the different in situ measures complicates the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.


2021 ◽  
Author(s):  
Pia Nielsen-Englyst ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Rasmus T. Tonboe ◽  
Gorm Dybkjær ◽  
...  

Abstract. The Arctic region is responding heavily to climate change, and yet, the air temperature of ice covered areas in the Arctic is heavily under-sampled when it comes to in situ measurements, resulting in large uncertainties in existing weather- and reanalysis products. This paper presents a method for estimating daily mean clear sky 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, using the Arctic and Antarctic ice Surface Temperatures from thermal Infrared (AASTI) satellite dataset, providing spatially detailed observations of the Arctic. The method is based on a linear regression model, which has been tuned against in situ observations to estimate daily mean T2m based on clear sky satellite ice surface skin temperatures. The daily satellite derived T2m product includes estimated uncertainties and covers clear sky snow and ice surfaces in the Arctic region during the period 2000–2009, provided on a 0.25 degree regular latitude-longitude grid. Comparisons with independent in situ measured T2m show average biases of 0.30 °C and 0.35 °C and average root mean square errors of 3.47 °C and 3.20 °C for land ice and sea ice, respectively. The associated uncertainties are verified to be very realistic for both land ice and sea ice, using in situ observations. The reconstruction provides a much better spatial coverage than the sparse in situ observations of T2m in the Arctic, is independent of numerical weather prediction model input and it therefore provides an important supplement to simulated air temperatures to be used for assimilation or global surface temperature reconstructions. A comparison between in situ T2m versus T2m derived from satellite and ERA-Interim/ERA5 estimates shows that the T2m derived from satellite observations validate similar or better than ERA-Interim/ERA5 in the Arctic.


2021 ◽  
Author(s):  
Mikhail Yu. Arshinov ◽  
Boris Belan ◽  
Denis Davydov ◽  
Artem Kozlov ◽  
Alexandr Fofonov

<p>The Arctic is warming much faster than other regions of the globe. In 2020, temperature anomalies in the Russian Arctic reached unprecedented high levels. The atmospheric composition in this key region still remains insufficiently studied that makes difficult predicting future climate change.</p><p>In September 2020, an extensive aircraft campaign was conducted to document the tropospheric composition over the Russian Arctic. The Optik Tu-134 research aircraft was equipped with instruments to carry out in-situ measurements of trace gases and aerosols, as well as with a lidar for profiling of aerosol backscatter. The aircraft flew over a vast area from Arkhangelsk to Anadyr. Six measurement flights with changing altitudes from 0.2 to 9.0 m were conducted over the waters of the Barents, Kara, Laptev, East Siberian, Chukchi, and Bering Seas. The weather was unusually warm for this period of the year, surface air temperatures were above 0°C through the campaign.</p><p>Here, we present the results of in-situ measurements of the vertical distribution of aerosol number concentrations in a wide range of sizes. A modified diffusional particle sizer (DPS) consisted of the Novosibirsk-type eight-stage screen diffusion battery connected to the TSI condensation particle counter Model 3756 was used to determine the number size distribution of particles between 0.003 mm and 0.2 mm (20 size bins). Distribution of particles in the size range from 0.25 µm to 32 µm (31 size bins) was measured by means of the Grimm aerosol spectrometer Model 1.109.</p><p>The flights over Barents and Kara Seas were predominantly performed under clear sky or partly cloudy weather conditions. Number size distributions were wide representing particles of almost all aerosol fractions. When flying in the upper troposphere with a constant altitude over these seas, some cases of enhanced concentrations of nucleation and Aitken mode particles comparable to ones in the lower troposphere were recorded, suggesting in situ new particle formation was likely to be taking place via gas-to-particle conversion aloft.</p><p>East of the Kara Sea, flights were conducted under mostly cloudy conditions resulting in a lower median aerosol number concentration and narrower size distributions.</p><p>This work was supported by the Russian Foundation for Basic Research (Grant No. 19-05-50024).</p>


2020 ◽  
Author(s):  
Lingling Suo ◽  
Yongqi Gao ◽  
Guillaume Gastineau ◽  
Yu-Chiao Liang ◽  
Rohit Ghosh ◽  
...  

<p>The Arctic amplified warming under global warming is one of the prominent climate change events during the past several decades. Arctic sea ice retreat contributed the majority of the near-surface warming, and little to the mid-troposphere warming. The remote factors might contribute to or modulate the aloft Arctic warming.</p><p>Here we performed a multi-model joint-analysis to study the role of the Pacific decadal oscillation, which is one of the most important recurring ocean-atmosphere variability in the climate system, in the tropospheric Arctic warming. In the multi-model simulation, PDO reduced the Arctic warming trend during 1979-2013 significantly in spring, Autumn and early winter season from the near-surface to the upper troposphere. The reduction of warming reaches 0.3 / 0.2 °C per decade in the upper / lower troposphere.</p>


2019 ◽  
Vol 13 (3) ◽  
pp. 1005-1024 ◽  
Author(s):  
Pia Nielsen-Englyst ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Rasmus Tonboe ◽  
Gorm Dybkjær ◽  
...  

Abstract. To facilitate the construction of a satellite-derived 2 m air temperature (T2 m) product for the snow- and ice-covered regions in the Arctic, observations from weather stations are used to quantify the relationship between the T2 m and skin temperature (Tskin). Multiyear data records of simultaneous Tskin and T2 m from 29 different in situ sites have been analysed for five regions, covering the lower and upper ablation zone and the accumulation zone of the Greenland Ice Sheet (GrIS), sea ice in the Arctic Ocean, and seasonal snow-covered land in northern Alaska. The diurnal and seasonal temperature variabilities and the impacts from clouds and wind on the T2 m–Tskin differences are quantified. Tskin is often (85 % of the time, all sites weighted equally) lower than T2 m, with the largest differences occurring when the temperatures are well below 0 ∘C or when the surface is melting. Considering all regions, T2 m is on average 0.65–2.65 ∘C higher than Tskin, with the largest differences for the lower ablation area and smallest differences for the seasonal snow-covered sites. A negative net surface radiation balance generally cools the surface with respect to the atmosphere, resulting in a surface-driven surface air temperature inversion. However, Tskin and T2 m are often highly correlated, and the two temperatures can be almost identical (<0.5 ∘C difference), with the smallest T2–Tskin differences around noon and early afternoon during spring, autumn and summer during non-melting conditions. In general, the inversion strength increases with decreasing wind speeds, but for the sites on the GrIS the maximum inversion occurs at wind speeds of about 5 m s−1 due to the katabatic winds. Clouds tend to reduce the vertical temperature gradient, by warming the surface, resulting in a mean overcast T2 m–Tskin difference ranging from −0.08 to 1.63 ∘C, with the largest differences for the sites in the low-ablation zone and the smallest differences for the seasonal snow-covered sites. To assess the effect of using cloud-limited infrared satellite observations, the influence of clouds on temporally averaged Tskin has been studied by comparing averaged clear-sky Tskin with averaged all-sky Tskin. To this end, we test three different temporal averaging windows: 24 h, 72 h and 1 month. The largest clear-sky biases are generally found when 1-month averages are used and the smallest clear-sky biases are found for 24 h. In most cases, all-sky averages are warmer than clear-sky averages, with the smallest bias during summer when the Tskin range is smallest.


2020 ◽  
Vol 1 (2) ◽  
pp. 155-177
Author(s):  
Ralf Becker ◽  
Marion Maturilli ◽  
Rolf Philipona ◽  
Klaus Behrens

Sign in / Sign up

Export Citation Format

Share Document