scholarly journals Non-target analysis using gas chromatography with time-of-flight mass spectrometry: application to time series of fourth generation synthetic halocarbons at Taunus Observatory (Germany)

2021 ◽  
Author(s):  
Fides Lefrancois ◽  
Markus Jesswein ◽  
Markus Thoma ◽  
Andreas Engel ◽  
Kieran Stanley ◽  
...  

Abstract. Production and use of many synthetic halogenated trace gases are regulated internationally because of their contribution to stratospheric ozone depletion or to climate change. In many applications they have been replaced by shorter-lived compounds which have become measurable in the atmosphere as emissions increased. Non-target monitoring of trace gases rather than targeted measurements of well-known substances is needed to keep up with such changes in the atmospheric composition. We regularly deploy gas chromatography (GC) coupled to time-of-flight mass spectrometry (TOF-MS) for analysis of flask air samples and in situ measurements at the Taunus Observatory, a site in central Germany. TOF-MS record data over a continuous mass range enable a retrospective analysis of the data set, which can thus be considered a type of digital air archive. This archive can be made use of if new substances come into use and their mass spectrometric fingerprint is identified. However, quantifying new replacement halocarbons can be challenging, as mole fractions are generally low, requiring high measurement precision and low detection limits. In addition, calibration can be demanding, as calibration gases may not contain sufficiently high amounts of newly used substances or the amounts in the calibration gas have not been quantified. This paper presents an indirect data evaluation approach for TOF-MS data, where the calibration is linked to another compound which could be quantified in the calibration gas. We also present an approach to evaluate the quality of the indirect calibration method and to select periods of stable instrument performance and well suited reference compounds. The method is applied to three short-lived synthetic halocarbons: HFO-1234-yf, HFO-1234ze(E), and HCFO-1233zd(E). They represent replacements for longer-lived HFCs and exhibit increasing mole fractions in the atmosphere. The indirectly calibrated results are compared to directly calibrated measurements using data from TOF-MS canister sample analysis and TOF-MS in situ measurements, which are available for some periods of our data set. The application of the indirect calibration method on several test cases can result into accuracies around 13 % to 20 %. For H(C)FOs accuracies up to 25 % are achieved. The indirectly calculated mole fractions of the investigated H(C)FOs at Taunus Observatory range between measured mole fractions at urban Dübendorf and Jungfraujoch stations in Switzerland.

2015 ◽  
Vol 15 (4) ◽  
pp. 1865-1899 ◽  
Author(s):  
L. E. Hatch ◽  
W. Luo ◽  
J. F. Pankow ◽  
R. J. Yokelson ◽  
C. E. Stockwell ◽  
...  

Abstract. The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4) and analyzed by two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–ToFMS). The sensitivity and resolving power of GC × GC–ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements for 708 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds meeting the peak selection criteria ranged from 129 to 474 among individual burns, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggesting that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, 11 sesquiterpenes were detected and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation.


Molecules ◽  
2010 ◽  
Vol 15 (10) ◽  
pp. 7006-7015 ◽  
Author(s):  
Syarul Nataqain Baharum ◽  
Hamidun Bunawan ◽  
Ma’aruf Abd. Ghani ◽  
Wan Aida Wan Mustapha ◽  
Normah Mohd Noor

2021 ◽  
Vol 14 (6) ◽  
pp. 4669-4687
Author(s):  
Fides Lefrancois ◽  
Markus Jesswein ◽  
Markus Thoma ◽  
Andreas Engel ◽  
Kieran Stanley ◽  
...  

Abstract. Production and use of many synthetic halogenated trace gases are regulated internationally due to their contribution to stratospheric ozone depletion or climate change. In many applications they have been replaced by shorter-lived compounds, which have become measurable in the atmosphere as emissions increased. Non-target monitoring of trace gases rather than targeted measurements of well-known substances is needed to keep up with such changes in the atmospheric composition. We regularly deploy gas chromatography (GC) coupled to time-of-flight mass spectrometry (TOF-MS) for analysis of flask air samples and in situ measurements at the Taunus Observatory, a site in central Germany. TOF-MS acquires data over a continuous mass range that enables a retrospective analysis of the dataset, which can be considered a type of digital air archive. This archive can be used if new substances come into use and their mass spectrometric fingerprint is identified. However, quantifying new replacement halocarbons can be challenging, as mole fractions are generally low, requiring high measurement precision and low detection limits. In addition, calibration can be demanding, as calibration gases may not contain sufficiently high amounts of newly measured substances or the amounts in the calibration gas may have not been quantified. This paper presents an indirect data evaluation approach for TOF-MS data, where the calibration is linked to another compound which could be quantified in the calibration gas. We also present an approach to evaluate the quality of the indirect calibration method, select periods of stable instrument performance and determine well suited reference compounds. The method is applied to three short-lived synthetic halocarbons: HFO-1234yf, HFO-1234ze(E), and HCFO-1233zd(E). They represent replacements for longer-lived hydrofluorocarbons (HFCs) and exhibit increasing mole fractions in the atmosphere. The indirectly calibrated results are compared to directly calibrated measurements using data from TOF-MS canister sample analysis and TOF-MS in situ measurements, which are available for some periods of our dataset. The application of the indirect calibration method on several test cases can result in uncertainties of around 6 % to 11 %. For hydro(chloro-)fluoroolefines (denoted H(C)FOs), uncertainties up to 23 % are achieved. The indirectly calculated mole fractions of the investigated H(C)FOs at Taunus Observatory range between measured mole fractions at urban Dübendorf and Jungfraujoch stations in Switzerland.


2020 ◽  
Author(s):  
Gareth J. Stewart ◽  
W. Joe F. Acton ◽  
Beth S. Nelson ◽  
Adam R. Vaughan ◽  
James R. Hopkins ◽  
...  

Abstract. 29 different fuel types used in residential dwellings in northern India were collected from across New Delhi (76 samples in total). Emission factors of a wide range of non-methane volatile organic compounds (NMVOCs) (192 compounds in total) were measured during controlled burning experiments using dual-channel gas chromatography with flame ionisation detection (DC-GD-FID), two-dimensional gas chromatography (GC×GC-FID), proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and solid-phase extraction two-dimensional gas chromatography with time-of-flight mass spectrometry (SPE-GC×GC-ToF-MS). 94 % quantification was achieved on average across all fuel types. The largest contributors to emissions from most fuel types were small non-aromatic oxygenated species, phenolics and furanics. The emission factors (in g kg−1) for total gas-phase NMVOCs were: fuel wood (18.7, 4.3–96.7), cow dung cake (62.0, 35.3–83.0), crop residue (37.9, 8.9–73.8), charcoal (5.4, 2.4–7.9), sawdust (72.4, 28.6–115.5), municipal solid waste (87.3, 56.6–119.1) and liquified petroleum gas (5.7, 1.9–9.8). The emission factors measured in this study allow for better characterisation, evaluation and understanding of the air quality impacts of residential solid fuel combustion in India.


Sign in / Sign up

Export Citation Format

Share Document