scholarly journals CH<sub>4</sub>, CO, and H<sub>2</sub>O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements

2012 ◽  
Vol 5 (6) ◽  
pp. 1387-1398 ◽  
Author(s):  
A. Galli ◽  
A. Butz ◽  
R. A. Scheepmaker ◽  
O. Hasekamp ◽  
J. Landgraf ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR). S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm) to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON). The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1) were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1). For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.

2012 ◽  
Vol 5 (2) ◽  
pp. 2131-2167
Author(s):  
A. Galli ◽  
A. Butz ◽  
R. A. Scheepmaker ◽  
O. Hasekamp ◽  
J. Landgraf ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR). S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm) to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON). The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1) were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1). For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.


2021 ◽  
Vol 13 (15) ◽  
pp. 3037
Author(s):  
Huy Hoa Huynh ◽  
Jaehung Yu ◽  
Lei Wang ◽  
Nam Hoon Kim ◽  
Bum Han Lee ◽  
...  

This paper demonstrates an integrative 3D model of short-wave infrared (SWIR) hyperspectral mapping and unmanned aerial vehicle (UAV)-based digital elevation model (DEM) for a carbonate rock outcrop including limestone and dolostone in a field condition. The spectral characteristics in the target outcrop showed the limestone well coincided with the reference spectra, while the dolostone did not show clear absorption features compared to the reference spectra, indicating a mixture of clay minerals. The spectral indices based on SWIR hyperspectral images were derived for limestone and dolostone using aluminum hydroxide (AlOH), hydroxide (OH), iron hydroxide (FeOH), magnesium hydroxide (MgOH) and carbonate ion (CO32−) absorption features based on random forest and logistic regression models with an accuracy over 87%. Given that the indices were derived from field data with consideration of commonly occurring geological units, the indices have better applicability for real world cases. The integrative 3D geological model developed by co-registration between hyperspectral map and UAV-based DEM using best matching SIFT descriptor pairs showed the 3D rock formations between limestone and dolostone. Moreover, additional geological information of the outcrop was extracted including thickness, slope, rock classification, strike, and dip.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Leonard Nitzsche ◽  
Jens Goldschmidt ◽  
Armin Lambrecht ◽  
Jürgen Wöllenstein

Abstract A dual comb spectrometer is used as gas sensor for the parallel detection of nitrous oxide (N2O) and carbon monoxide (CO). These gases have overlapping absorption features in the mid-infrared (MIR) at a wavelength of 4.6 µm. With a spectra acquisition rate of 10 Hz, concentrations of 50 ppm N2O and 30 ppm CO are monitored with a relative precision of 6 × 10 − 3 6\times {10^{-3}} and 3 × 10 − 3 3\times {10^{-3}} respectively. The limit of detections are 91 ppb for N2O and 50 ppb for CO for an integration time of 25 s. The system exhibits a linear sensitivity from 2 ppm to 100 ppm with coefficients of determination of 0.99998 for N2O and 0.99996 for CO.


2013 ◽  
Vol 6 (2) ◽  
pp. 3545-3579 ◽  
Author(s):  
S. Dohe ◽  
V. Sherlock ◽  
F. Hase ◽  
M. Gisi ◽  
J. Robinson ◽  
...  

Abstract. The Total Carbon Column Observing Network (TCCON) has been established to provide ground-based remote sensing measurements of the column-average dry air mole fractions of key greenhouse gases. To ensure the network wide consistency, biases between Fourier Transform spectrometers at different sites have to be well controlled. In this study we investigate a fundamental correction scheme for errors in the sampling of the interferogram. This is a two-step procedure in which the laser sampling error (LSE) is quantified using a subset of suitable interferograms and then used to resample all the interferograms in the timeseries. Timeseries of measurements acquired at the TCCON sites Izaña and Lauder are used to demonstrate the method. At both sites the sampling error histories show changes in LSE due to instrument interventions. Estimated LSE are in good agreement with sampling errors inferred from lamp measurements of the ghost to parent ratio (Lauder). The LSE introduce retrieval biases which are minimised when the interferograms are resampled. The original timeseries of Xair and XCO2 at both sites show discrepancies of 0.2–0.5% due to changes in the LSE associated with instrument interventions or changes in the measurement sample rate. After resampling discrepancies are reduced to 0.1% at Lauder and 0.2% at Izaña. In the latter case, coincident changes in interferometer alignment may also contribute to the residual difference.


2019 ◽  
Vol 12 (11) ◽  
pp. 6125-6141 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Mahesh Kumar Sha ◽  
Nicolas Kumps ◽  
Christian Hermans ◽  
...  

Abstract. The Total Carbon Column Observing Network (TCCON) column-averaged dry air mole fraction of CH4 (XCH4) measurements have been widely used to validate satellite observations and to estimate model simulations. The GGG2014 code is the standard TCCON retrieval software used in performing a profile scaling retrieval. In order to obtain several vertical pieces of information in addition to the total column, in this study, the SFIT4 retrieval code is applied to retrieve the CH4 mole fraction vertical profile from the Fourier transform spectrometer (FTS) spectrum at six sites (Ny-Ålesund, Sodankylä, Bialystok, Bremen, Orléans and St Denis) during the time period of 2016–2017. The retrieval strategy of the CH4 profile retrieval from ground-based FTS near-infrared (NIR) spectra using the SFIT4 code (SFIT4NIR) is investigated. The degree of freedom for signal (DOFS) of the SFIT4NIR retrieval is about 2.4, with two distinct pieces of information in the troposphere and in the stratosphere. The averaging kernel and error budget of the SFIT4NIR retrieval are presented. The data accuracy and precision of the SFIT4NIR retrievals, including the total column and two partial columns (in the troposphere and stratosphere), are estimated by TCCON standard retrievals, ground-based in situ measurements, Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) satellite observations, TCCON proxy data and AirCore and aircraft measurements. By comparison against TCCON standard retrievals, it is found that the retrieval uncertainty of SFIT4NIR XCH4 is similar to that of TCCON standard retrievals with systematic uncertainty within 0.35 % and random uncertainty of about 0.5 %. The tropospheric and stratospheric XCH4 from SFIT4NIR retrievals are assessed by comparison with AirCore and aircraft measurements, and there is a 1.0 ± 0.3 % overestimation in the SFIT4NIR tropospheric XCH4 and a 4.0 ± 2.0 % underestimation in the SFIT4NIR stratospheric XCH4, which are within the systematic uncertainties of SFIT4NIR-retrieved partial columns in the troposphere and stratosphere respectively.


2020 ◽  
Vol 20 (4) ◽  
pp. 451-460
Author(s):  
Keiko Hattori ◽  
Anna Fonseca ◽  
Tabetha Sheppard

Rhyolitic rocks hosting the El Zapote epithermal Ag deposit are pervasively altered and contain ammonium ranging from 290 to 1750 ppm. High ammonium values are found in samples containing abundant fine-grained illite. This fine-grained illite shows overall low ratios of K/(Al + Fe), likely due to ammonium substituting K+. Samples containing high ammonium, greater than 1000 ppm in the proximity of Ag-bearing veins, show distinct absorption features of ammonium in short-wave infrared (SWIR) absorption spectra. Samples containing ammonium ranging from 500 to 1000 ppm show mixed absorption signatures; some show prominent absorption features related to ammonium, whereas others have no recognizable features. There is no discernible absorption feature related to ammonium for samples containing less than 500 ppm NH4. The data suggest that SWIR spectroscopy is useful in locating the proximal areas to mineralization, but the extent of ammonium alteration is much larger than that identified by SWIR spectroscopy. Nitrogen isotope compositions of ammonium are similar to those of sedimentary rocks, suggesting that the source of ammonium in altered rhyolite is sedimentary basement rocks in the area.Supplementary material: bulk rock composition is available at https://doi.org/10.6084/m9.figshare.c.5015663


Sign in / Sign up

Export Citation Format

Share Document