scholarly journals Influence of spatial heterogeneity of local surface albedo on the area-averaged surface albedo retrieved from airborne irradiance measurements

2013 ◽  
Vol 6 (3) ◽  
pp. 527-537 ◽  
Author(s):  
E. Jäkel ◽  
M. Wendisch ◽  
B. Mayer

Abstract. Spectral airborne upward and downward irradiance measurements are used to derive the area-averaged surface albedo. Real surfaces are not homogeneous in their reflectivity. Therefore, this work studies the effects of the heterogeneity of surface reflectivity on the area-averaged surface albedo to quantify how well aircraft measurements can resolve the small-scale variability of the local surface albedo. For that purpose spatially heterogeneous surface albedo maps were input into a 3-dimensional (3-D) Monte Carlo radiative transfer model to simulate 3-D irradiance fields. The calculated up- and downward irradiances in altitudes between 0.1 and 5 km are used to derive the area-averaged surface albedo using an iterative retrieval method that removes the effects due to atmospheric scattering and absorption within the layer beneath the considered level. For the case of adjacent land and sea surfaces, parametrizations are presented which quantify the horizontal distance from the coastline that is required to reduce surface heterogeneity effects on the area-averaged surface albedo to a given limit. The parametrization which is a function of altitude, aerosol optical depth, single scattering albedo, and the ratio of local land and sea albedo was applied for airborne spectral measurements. In addition, the deviation between area-averaged and local surface albedo is determined for more complex surface albedo maps. For moderate aerosol conditions (optical depth less than 0.4) and a wavelength range between 400 and 1000 nm, the altitude and the heterogeneity of the surface albedo are the dominant factors determining the mean deviation between local and area-averaged surface albedo. A parametrization of the mean deviation is applied to an albedo map that was derived from a Landsat image of an area in East Anglia (UK). Parametrization and direct comparison of local and area-averaged surface albedo show similar mean deviations (20% vs. 25%) over land.

2012 ◽  
Vol 5 (5) ◽  
pp. 7457-7487
Author(s):  
E. Jäkel ◽  
M. Wendisch ◽  
B. Mayer

Abstract. Spectral airborne upward and downward irradiance measurements are used to derive the area-averaged surface albedo. Real surfaces are not homogeneous in their reflectivity. Therefore, this work studies the effects of the heterogeneity of surface reflectivity on the area-averaged surface albedo to quantify how well aircraft measurements can resolve the small-scale variability of the local surface albedo. For that purpose spatially heterogeneous surface albedo maps were input into a 3-dimensional (3-D) Monte Carlo radiative transfer model to simulate 3-D irradiance fields. The calculated up- and downward irradiances in altitudes between 0.1 km and 5 km are used to derive the area-averaged surface albedo using an iterative retrieval method that removes the effects due to atmospheric scattering and absorption within the layer beneath the considered level. For the case of adjacent land and sea surfaces a parametrization is presented which quantifies the horizontal distance to the coastline that is required to reduce surface heterogeneity effects on the area-averaged surface albedo to a given limit. The parametrization which is a function of altitude, aerosol optical depth, and the ratio of local land and sea albedo was applied for airborne spectral measurements. In addition, the deviation between area-averaged and local surface albedo is determined for more complex surface albedo maps. For moderate aerosol conditions (optical depth less than 0.4) and the visible wavelength range, the altitude and the heterogeneity of the surface albedo are the dominant factors determining the mean deviation between local and area-averaged surface albedo. A parametrization of the mean deviation is applied to an albedo map that was derived from a Landsat image of an area in East Anglia (UK). Parametrization and direct comparison of local and area-averaged surface albedo show similar mean deviations (20% vs. 25%) over land.


Author(s):  
H. Lin ◽  
X. Zhang ◽  
Y. Yang ◽  
X. Wu ◽  
D. Guo

From geologic perspective, understanding the types, abundance, and size distributions of minerals allows us to address what geologic processes have been active on the lunar and planetary surface. The imaging spectrometer which was carried by the Yutu Rover of Chinese Chang’E-3 mission collected the reflectance at four different sites at the height of ~ 1 m, providing a new insight to understand the lunar surface. The mineral composition and Particle Size Distribution (PSD) of these four sites were derived in this study using a Radiative Transfer Model (RTM) and Sparse Unmixing (SU) algorithm. The endmembers used were clinopyroxene, orthopyroxene, olivine, plagioclase and agglutinate collected from the lunar sample spectral dataset in RELAB. The results show that the agglutinate, clinopyroxene and olivine are the dominant minerals around the landing site. In location Node E, the abundance of agglutinate can reach up to 70 %, and the abundances of clinopyroxene and olivine are around 10 %. The mean particle sizes and the deviations of these endmembers were retrieved. PSDs of all these endmembers are close to normal distribution, and differences exist in the mean particle sizes, indicating the difference of space weathering rate of these endmembers.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


2016 ◽  
Vol 9 (10) ◽  
pp. 4955-4975 ◽  
Author(s):  
Jochen Landgraf ◽  
Joost aan de Brugh ◽  
Remco Scheepmaker ◽  
Tobias Borsdorff ◽  
Haili Hu ◽  
...  

Abstract. The Tropospheric Monitoring Instrument (TROPOMI) spectrometer is the single payload of the Copernicus Sentinel 5 Precursor (S5P) mission. It measures Earth radiance spectra in the shortwave infrared spectral range around 2.3 µm with a dedicated instrument module. These measurements provide carbon monoxide (CO) total column densities over land, which for clear sky conditions are highly sensitive to the tropospheric boundary layer. For cloudy atmospheres over land and ocean, the column sensitivity changes according to the light path through the atmosphere. In this study, we present the physics-based operational S5P algorithm to infer atmospheric CO columns satisfying the envisaged accuracy ( <  15 %) and precision ( <  10 %) both for clear sky and cloudy observations with low cloud height. Here, methane absorption in the 2.3 µm range is combined with methane abundances from a global chemical transport model to infer information on atmospheric scattering. For efficient processing, we deploy a linearized two-stream radiative transfer model as forward model and a profile scaling approach to adjust the CO abundance in the inversion. Based on generic measurement ensembles, including clear sky and cloudy observations, we estimated the CO retrieval precision to be  ≤  11 % for surface albedo  ≥  0.03 and solar zenith angle  ≤  70°. CO biases of  ≤  3 % are introduced by inaccuracies in the methane a priori knowledge. For strongly enhanced CO concentrations in the tropospheric boundary layer and for cloudy conditions, CO errors in the order of 8 % can be introduced by the retrieval of cloud parameters of our algorithm. Moreover, we estimated the effect of a distorted spectral instrument response due to the inhomogeneous illumination of the instrument entrance slit in the flight direction to be  <  2 % with pseudo-random characteristics when averaging over space and time. Finally, the CO data exploitation is demonstrated for a TROPOMI orbit of simulated shortwave infrared measurements. Overall, the study demonstrates that for an instrument that performs in compliance with the pre-flight specifications, the CO product will meet the required product performance well.


2019 ◽  
Vol 76 (9) ◽  
pp. 2761-2780 ◽  
Author(s):  
Petri Räisänen ◽  
Anders V. Lindfors

Abstract Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α &lt; 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.


2013 ◽  
Vol 70 (1) ◽  
pp. 317-329 ◽  
Author(s):  
M. Sikand ◽  
J. Koskulics ◽  
K. Stamnes ◽  
B. Hamre ◽  
J. J. Stamnes ◽  
...  

Abstract Microphysical and radiative measurements in boundary layer mixed-phase clouds (MPCs), consisting of ice crystals and liquid droplets, have been analyzed. These cloud measurements were collected during a May–June 2008 tethered-balloon campaign in Ny-Ålesund, Norway, located at 78.9°N, 11.9°E in the High Arctic. The instruments deployed on the tethered-balloon platform included a radiometer, a cloud particle imager (CPI), and a meteorological package. To analyze the data, a radiative transfer model (RTM) was constructed with two cloud layers—consistent with the CPI data—embedded in a background Rayleigh scattering atmosphere. The mean intensities estimated from the radiometer measurements on the balloon were used in conjunction with the RTM to quantify the vertical structure of the MPC system, while the downward irradiances measured by an upward-looking ground-based radiometer were used to constrain the total cloud optical depth. The time series of radiometer and CPI data obtained while profiling the cloud system was used to estimate the time evolution of the liquid water and ice particle optical depths as well as the vertical location of the two cloud layers.


2018 ◽  
Vol 176 ◽  
pp. 08008
Author(s):  
Daniela Viviana Vlăduţescu ◽  
Stephen E. Schwartz ◽  
Dong Huang

Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.


2016 ◽  
Vol 10 (5) ◽  
pp. 2113-2128 ◽  
Author(s):  
François Andrieu ◽  
Frédéric Schmidt ◽  
Bernard Schmitt ◽  
Sylvain Douté ◽  
Olivier Brissaud

Abstract. We present an effort to validate a previously developed radiative transfer model, and an innovative Bayesian inversion method designed to retrieve the properties of slab-ice-covered surfaces. This retrieval method is adapted to satellite data, and is able to provide uncertainties on the results of the inversions. We focused on surfaces composed of a pure slab of water ice covering an optically thick layer of snow in this study. We sought to retrieve the roughness of the ice–air interface, the thickness of the slab layer and the mean grain diameter of the underlying snow. Numerical validations have been conducted on the method, and showed that if the thickness of the slab layer is above 5 mm and the noise on the signal is above 3 %, then it is not possible to invert the grain diameter of the snow. In contrast, the roughness and the thickness of the slab can be determined, even with high levels of noise up to 20 %. Experimental validations have been conducted on spectra collected from laboratory samples of water ice on snow using a spectro-radiogoniometer. The results are in agreement with the numerical validations, and show that a grain diameter can be correctly retrieved for low slab thicknesses, but not for bigger ones, and that the roughness and thickness are correctly inverted in every case.


2009 ◽  
Vol 630 ◽  
pp. 225-265 ◽  
Author(s):  
ISAAC W. EKOTO ◽  
RODNEY D. W. BOWERSOX ◽  
THOMAS BEUTNER ◽  
LARRY GOSS

The response of the mean and turbulent flow structure of a supersonic high-Reynolds-number turbulent boundary layer flow subjected to local and global mechanical distortions was experimentally examined. Local disturbances were introduced via small-scale wall patterns, and global distortions were induced through streamline curvature-driven pressure gradients. Local surface topologies included k-type diamond and d-type square elements; a smooth wall was examined for comparison purposes. Three global distortions were studied with each of the three surface topologies. Measurements included planar contours of the mean and fluctuating velocity via particle image velocimetry, Pitot pressure profiles, pressure sensitive paint and Schlieren photography. The velocity data were acquired with sufficient resolution to characterize the mean and turbulent flow structure and to examine interactions between the local surface roughness distortions and the imposed pressure gradients on the turbulence production. A strong response to both the local and global distortions was observed with the diamond elements, where the effect of the elements extended into the outer regions of the boundary layer. It was shown that the primary cause for the observed response was the result of local shock and expansion waves modifying the turbulence structure and production. By contrast, the square elements showed a less pronounced response to local flow distortions as the waves were significantly weaker. However, the frictional losses were higher for the blunter square roughness elements. Detailed quantitative characterizations of the turbulence flow structure and the associated production mechanisms are described herein. These experiments demonstrate fundamental differences between supersonic and subsonic rough-wall flows, and the new understanding of the underlying mechanisms provides a scientific basis to systematically modify the mean and turbulence flow structure all the way across supersonic boundary layers.


Sign in / Sign up

Export Citation Format

Share Document