scholarly journals Limb–nadir matching using non-coincident NO<sub>2</sub> observations: proof of concept and the OMI-minus-OSIRIS prototype product

2016 ◽  
Vol 9 (8) ◽  
pp. 4103-4122 ◽  
Author(s):  
Cristen Adams ◽  
Elise N. Normand ◽  
Chris A. McLinden ◽  
Adam E. Bourassa ◽  
Nicholas D. Lloyd ◽  
...  

Abstract. A variant of the limb–nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical box model. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical column densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product – referred to as OMI-minus-OSIRIS (OmO) – was generated through limb–nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60° S to 60° N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2, including a background value of about 0.3 × 1015 molecules cm−2 over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb–nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.

2016 ◽  
Author(s):  
Cristen Adams ◽  
Elise N. Normand ◽  
Chris A. McLinden ◽  
Adam E. Bourassa ◽  
Nicholas D. Lloyd ◽  
...  

Abstract. A variant of the limb-nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical box model. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical columns densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product – referred to as OMI-minus-OSIRIS (OmO) – was generated through limb-nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60°S to 60°N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2 including a background value of about 0.3 × 1015 molecules/cm2 over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb-nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.


2019 ◽  
Vol 12 (1) ◽  
pp. 491-516 ◽  
Author(s):  
Julien Chimot ◽  
J. Pepijn Veefkind ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
Pieternel F. Levelt

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas and under any atmospheric conditions. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, e.g. megacities, and/or biomass-burning episodes, affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases caused by aerosol scattering and absorption effects is one of the main retrieval challenges from air quality satellite instruments. In this study, the reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2−O2 band, over eastern China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last 2 years in view of an improved use of the OMI 477 nm O2−O2 band: the updated OMCLDO2 algorithm, which derives improved effective cloud parameters, the aerosol neural network (NN), which retrieves explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead of OMCLDO2 because it primarily estimates an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance dominated by fine scattering and weakly absorbing particles, e.g. from [-20%:-40%] to [0 %:20 %] in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 %:40 %], than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes a more realistic consideration of aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. For that purpose, several elements are recommended in this paper. Overall, we demonstrate the possibility of applying a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2−O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).


2014 ◽  
Vol 14 (19) ◽  
pp. 10565-10588 ◽  
Author(s):  
S. Choi ◽  
J. Joiner ◽  
Y. Choi ◽  
B. N. Duncan ◽  
A. Vasilkov ◽  
...  

Abstract. We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.


2021 ◽  
Author(s):  
Danran Li ◽  
Shanshan Wang ◽  
Ruibin Xue ◽  
Jian Zhu ◽  
Sanbao Zhang ◽  
...  

Abstract. In recent years, satellite remote sensing has been increasingly used in the long-term observation of ozone (O3) precursors and its formation regime. In this work, formaldehyde (HCHO) data from Ozone Monitoring Instrument (OMI) were used to analyse the temporal and spatial distribution of HCHO vertical column densities (VCDs) in Shanghai from 2010 to 2019. HCHO VCDs exhibited the highest value in summer and the lowest in winter, the high-VCD concentrated in western Shanghai. Temperature largely influence HCHO by affecting the biogenic emissions and photochemical reactions, and industry was the major anthropogenic source. The satellite observed formaldehyde to nitrogen dioxide ratio (FNRSAT) reflects that the O3 formation regime had significant seasonal characteristics and gradually manifested as transitional ozone formation regime dominated in Shanghai. The uneven distribution in space was mainly reflected as the higher FNRSAT and surface O3 concentration in rural area. To compensate the shortcoming of FNRSAT that it can only characterize O3 formation around satellite overpass time, correction of FNRSAT was implemented with hourly surface FNR and O3 data. After correction, O3 formation regime showed the trend moving towards VOC-limited in both time and space, and regime indicated by FNRSAT can better reflect O3 formation for a day. This study can help us better understand HCHO characteristics and O3 formation regime in Shanghai, and also provide a method to improve FNRSAT for characterizing O3 formation in a day, which will be significant for developing O3 prevention and control strategies.


2015 ◽  
Vol 8 (9) ◽  
pp. 9209-9240 ◽  
Author(s):  
G. González Abad ◽  
A. Vasilkov ◽  
C. Seftor ◽  
X. Liu ◽  
K. Chance

Abstract. This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on-board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a consistent set of long term data from two different instruments that share a similar concept. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good quality retrievals. Indeed, the improved signal to noise ratio (SNR) of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ~ 5 × 10−4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm−2. Total vertical column densities (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products with our OMPS product using one year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product are 21 % between OMI SAO and OMPS SAO and 38 % between OMI BIRA and OMPS SAO for eight selected regions.


2017 ◽  
Vol 10 (9) ◽  
pp. 3133-3149 ◽  
Author(s):  
Nickolay A. Krotkov ◽  
Lok N. Lamsal ◽  
Edward A. Celarier ◽  
William H. Swartz ◽  
Sergey V. Marchenko ◽  
...  

Abstract. We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry–transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ∼ 10–40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.


2018 ◽  
Vol 10 (11) ◽  
pp. 1789 ◽  
Author(s):  
Hugo Mak ◽  
Joshua Laughner ◽  
Jimmy Fung ◽  
Qindan Zhu ◽  
Ronald Cohen

Improving air quality and reducing human exposure to unhealthy levels of airborne chemicals are important global missions, particularly in China. Satellite remote sensing offers a powerful tool to examine regional trends in NO2, thus providing a direct measure of key parameters that strongly affect surface air quality. To accurately resolve spatial gradients in NO2 concentration using satellite observations and thus understand local and regional aspects of air quality, a priori input data at sufficiently high spatial and temporal resolution to account for pixel-to-pixel variability in the characteristics of the land and atmosphere are required. In this paper, we adapt the Berkeley High Resolution product (BEHR-HK) and meteorological outputs from the Weather Research and Forecasting (WRF) model to describe column NO2 in southern China. The BEHR approach is particularly useful for places with large spatial variabilities and terrain height differences such as China. There are two major objectives and goals: (1) developing new BEHR-HK v3.0C product for retrieving tropospheric NO2 vertical column density (TVCD) within part of southern China, for four months of 2015, based upon satellite datasets from Ozone Monitoring Instrument (OMI); and (2) evaluating BEHR-HK v3.0C retrieval result through validation, by comparing with MAX-DOAS tropospheric column measurements conducted in Guangzhou. Results show that all BEHR-HK retrieval algorithms (with R-value of 0.9839 for v3.0C) are of higher consistency with MAX-DOAS measurements than OMI-NASA retrieval (with R-value of 0.7644). This opens new windows into research questions that require high spatial resolution, for example retrieving NO2 vertical column and ground pollutant concentration in China and other countries.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 444 ◽  
Author(s):  
Chunjiao Wang ◽  
Ting Wang ◽  
Pucai Wang

In recent years, new and strict air quality regulations have been implemented in China. Therefore, it is of great significance to evaluate the current air pollution situation and effectiveness of actions. In this study, Ozone Monitoring Instrument (OMI) satellite data were used to detect the spatiotemporal characteristics of tropospheric NO2 columns over China from 2005 to 2018, including spatial distribution, seasonal cycles and long-term trends. The averaged NO2 pollution is higher in southeastern China and lower in the northwest, which are well delineated by the Heihe–Tengchong line. Furthermore, the NO2 loadings are highest in the North China Plain, with vertical column density (VCD) exceeding 13 × 1015 molec cm−2. Regarding the seasonal cycle, the NO2 loadings in eastern China is highest in winter and lowest in summer, while the western region shows the opposite feature. The amplitude of annual range increase gradually from the south to the north. If the entire period of 2005–2018 is taken into account, China has experienced little change in NO2. In fact, however, there appears to be significant trends of an increase followed by a downward tendency, with the turning point in the year 2012. In the former episode of 2005–2012, increasing trends overwhelm nearly the whole nation, especially in the Jing–Jin–Tang region, Shandong Province, and Northern Henan and Southern Hebei combined regions, where the rising rates were as high as 1.0–1.8 × 1015 molec cm−2 year−1. In contrast, the latter episode of 2013–2018 features remarkable declines in NO2 columns over China. Particularly, the regions where the decreased degree was remarkable in 2013–2018 were consistent with the regions where the upward trend was obvious in 2005–2012. Overall, this upward–downward pattern is true for most parts of China. However, some of the largest metropolises, such as Beijing, Shanghai and Guangzhou, witnessed a continuous decrease in the NO2 amounts, indicating earlier and more stringent measures adopted in these areas. Finally, it can be concluded that China’s recent efforts to cut NO2 pollution are successful, especially in mega cities.


2011 ◽  
Vol 11 (22) ◽  
pp. 11761-11775 ◽  
Author(s):  
C. J. Lee ◽  
J. R. Brook ◽  
G. J. Evans ◽  
R. V. Martin ◽  
C. Mihele

Abstract. Ozone Monitoring Instrument (OMI) tropospheric NO2 vertical column density data were used in conjunction with in-situ NO2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO2 concentrations at 0.1° (~11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated directly across the US-Canada border from Detroit, MI. Photolytic NO2 monitors were collocated with standard NO2 monitors to provide qualitative data regarding NOz interference during the campaign. The accuracy of the OMI-inferred concentrations was tested using two-week integrative NO2 measurements collected with passive monitors at 18 locations, approximating a 15 km grid across the region, for 7 consecutive two-week periods. When compared with these passive results, satellite-inferred concentrations showed an 18% positive bias. The correlation of the passive monitor and OMI-inferred concentrations (R=0.69, n=115) was stronger than that for the passive monitor concentrations and OMI column densities (R=0.52), indicating that using a sparse network of monitoring sites to estimate concentrations improves the direct utility of the OMI observations. OMI-inferred concentrations were then calculated for four years to show an overall declining trend in surface NO2 concentrations in the region. Additionally, by separating OMI-inferred surface concentrations by wind direction, clear patterns in emissions and affected down-wind regions, in particular around the US-Canada border, were revealed.


2008 ◽  
Vol 8 (2) ◽  
pp. 8243-8271 ◽  
Author(s):  
H. Irie ◽  
Y. Kanaya ◽  
H. Akimoto ◽  
H. Tanimoto ◽  
Z. Wang ◽  
...  

Abstract. A challenge for the quantitative analysis of tropospheric nitrogen dioxide (NO2) column data from satellite observations is posed mainly by the lack of satellite-independent observations for validation. We performed such observations of the tropospheric NO2 column using the ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique in the North China Plain (NCP) from 29 May to 29 June 2006. Comparisons between tropospheric NO2 columns measured by MAX-DOAS and the Ozone Monitoring Instrument (OMI) onboard the Aura satellite indicate that OMI data (the standard product, version 3) over NCP may have a positive bias of 1.6×1015 molecules cm−2 (20%), where the estimated random error in the OMI data is 0.6×1015 molecules cm−2 or approximately 8%. Combining these results with literature validation results for the US, Europe, and Pacific Ocean suggests that a bias of +20%/–30% is a reasonable estimate, accounting for different regions. Considering the uncertainty estimated here will pave the way for quantitative studies using OMI NO2 data, especially over NCP.


Sign in / Sign up

Export Citation Format

Share Document