scholarly journals Esrange lidar's new pure rotational-Raman channel for measurement of temperature and aerosol extinction in the troposphere and lower stratosphere

2012 ◽  
Vol 5 (5) ◽  
pp. 6455-6478
Author(s):  
P. Achtert ◽  
M. Khaplanov ◽  
F. Khosrawi ◽  
J. Gumbel

Abstract. The Department of Meteorology at Stockholm University operates the Esrange Rayleigh/Raman lidar at Esrange (68° N, 21° E) near the Swedish city of Kiruna. This paper describes the design and first measurements of the new pure rotational-Raman channel of the Esrange lidar. The Esrange lidar uses a pulsed Nd:YAG solid-state laser operating at 532 nm as light source with a repetition rate of 20 Hz and a pulse energy of 350 mJ. The minimum vertical resolution 150 m and the integration time for one profile is 5000 shots. The newly implemented channel allows for measurements of atmospheric temperature at altitudes below 35 km and is currently optimized for temperature measurements between 180 and 200 K. This corresponds to conditions in the lower Arctic stratosphere during winter. In addition to the temperature measurements the aerosol extinction coefficient and the aerosol backscatter coefficient at 532 nm can be measured independently. Our filter-based design minimizes the systematic error in the obtained temperature profile to less than 0.51 K. By combining rotational-Raman measurements (5–35 km height) and the integration technique (30–80 km height), the Esrange lidar is now capable of measuring atmospheric temperature profiles from the lower troposphere up to the mesosphere. With the improved setup, the system can be used to validate current lidar-based polar stratospheric cloud classification schemes. The new capability of the instrument measuring temperature and aerosol extinction furthermore enables studies of the thermal structure and variability of the upper troposphere/lower stratosphere. Although several lidars are operated at polar latitudes, there are few instruments that are capable to measure temperature profiles in the troposphere, stratosphere, and mesosphere, as well as aerosols extinction in the troposphere and lower stratosphere with daylight capability.

2013 ◽  
Vol 6 (1) ◽  
pp. 91-98 ◽  
Author(s):  
P. Achtert ◽  
M. Khaplanov ◽  
F. Khosrawi ◽  
J. Gumbel

Abstract. The Department of Meteorology at Stockholm University operates the Esrange Rayleigh/Raman lidar at Esrange (68° N, 21° E) near the Swedish city of Kiruna. This paper describes the design and first measurements of the new pure rotational-Raman channel of the Esrange lidar. The Esrange lidar uses a pulsed Nd:YAG solid-state laser operating at 532 nm as light source with a repetition rate of 20 Hz and a pulse energy of 350 mJ. The minimum vertical resolution is 150 m and the integration time for one profile is 5000 shots. The newly implemented channel allows for measurements of atmospheric temperature at altitudes below 35 km and is currently optimized for temperature measurements between 180 and 200 K. This corresponds to conditions in the lower Arctic stratosphere during winter. In addition to the temperature measurements, the aerosol extinction coefficient and the aerosol backscatter coefficient at 532 nm can be measured independently. Our filter-based design minimizes the systematic error in the obtained temperature profile to less than 0.51 K. By combining rotational-Raman measurements (5–35 km height) and the integration technique (30–80 km height), the Esrange lidar is now capable of measuring atmospheric temperature profiles from the upper troposphere up to the mesosphere. With the improved setup, the system can be used to validate current lidar-based polar stratospheric cloud classification schemes. The new capability of the instrument measuring temperature and aerosol extinction furthermore enables studies of the thermal structure and variability of the upper troposphere/lower stratosphere. Although several lidars are operated at polar latitudes, there are few instruments that are capable of measuring temperature profiles in the troposphere, stratosphere, and mesosphere, as well as aerosols extinction in the troposphere and lower stratosphere with daylight capability.


2009 ◽  
Vol 26 (8) ◽  
pp. 1493-1509 ◽  
Author(s):  
Carl A. Mears ◽  
Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature in several thick atmospheric layers. Satellite measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and have continued to the present via the use of measurements from the follow-on series of instruments, the Advanced Microwave Sounding Unit (AMSU). The weighting function for MSU channel 2 is centered in the middle troposphere but contains significant weight in the lower stratosphere. To obtain an estimate of tropospheric temperature change that is free from stratospheric effects, a weighted average of MSU channel 2 measurements made at different local zenith angles is used to extrapolate the measurements toward the surface, which results in a measurement of changes in the lower troposphere. In this paper, a description is provided of methods that were used to extend the MSU method to the newer AMSU channel 5 measurements and to intercalibrate the results from the different types of satellites. Then, satellite measurements are compared to results from homogenized radiosonde datasets. The results are found to be in excellent agreement with the radiosonde results in the northern extratropics, where the majority of the radiosonde stations are located.


2011 ◽  
Vol 4 (6) ◽  
pp. 7435-7469 ◽  
Author(s):  
U. Löhnert ◽  
O. Maier

Abstract. The motivation of this study is to verify theoretical expectations placed on ground-based radiometer techniques and to confirm whether they are suitable for supporting key missions of national weather services, such as timely and accurate weather advisories and warnings. We evaluate reliability and accuracy of atmospheric temperature profiles retrieved continuously by a HATPRO (Humidity And Temperature PROfiler) system operated at the aerological station of Payerne (MeteoSwiss) in the time period August 2006–December 2009. Assessment is performed by comparing temperatures from the radiometer against temperature measurements from a radiosonde accounting for a total of 2088 quality-controlled all-season cases. In the evaluated time period, HATPRO delivered reliable temperature profiles in 88% of all-weather conditions with a temporal resolution of 15 min. Random differences between HATPRO and radiosonde are down to 0.5 K in the lower boundary layer and rise up to 1.7 K at 4 km height. The differences observed between HATPRO and radiosonde in the lower boundary layer are similar to the differences observed between the radiosonde and another in-situ sensor located on a close-by 30 m tower. Temperature retrievals from above 4 km contain less than 5% of the total information content of the measurements, which makes clear that this technique is mainly suited for continuous observations in the boundary layer. Systematic temperature differences are also observed throughout the retrieved profile and can account for up to ±0.5 K. These errors are due to offsets in the measurements of the microwave radiances that have been corrected for in data post-processing and lead to nearly bias-free overall temperature retrievals. Different reasons for the radiance offsets are discussed, but cannot be unambiguously determined retrospectively. Monitoring and, if necessary, corrections for radiance offsets as well as a real-time rigorous automated data quality control are mandatory for microwave profiler systems that are designated for operational temperature profiling. In the analysis of day/night differences, it is shown that systematic differences between radiosonde and HATPRO decrease throughout the boundary layer if 2 m surface temperature measurements are included in the retrieval.


2013 ◽  
Vol 30 (10) ◽  
pp. 2382-2393 ◽  
Author(s):  
R. Philipona ◽  
A. Kräuchi ◽  
G. Romanens ◽  
G. Levrat ◽  
P. Ruppert ◽  
...  

Abstract Atmospheric temperature and humidity profiles are important for weather prediction, but climate change has increased the interest in upper-air observations asking for very high-quality reference measurements. This paper discusses an experimental approach to determine the radiation-induced error on radiosonde air temperature measurements. On the one hand, solar shortwave and thermal longwave radiation profiles were accurately measured during radiosonde ascents from the surface to 35-km altitude. On the other hand, air temperature was measured with several thermocouples on the same flight, simultaneously under sun-shaded and unshaded conditions. The radiation experiments reveal that thermal radiation errors on the very thin thermocouple of the Meteolabor SRS-C34 radiosonde are similar during night- and daytime. They produce a radiative cooling in the lower troposphere and the upper stratosphere, but a radiative heating in the upper troposphere and lower stratosphere. Air temperature experiments with several thermocouples, however, show that solar radiation produces a radiative heating of about +0.2°C near the surface, which linearly increases to about +1°C at 32 km (~10 hPa). The new solar radiation error profile was then applied to SRS-C34 measurements made during the Eighth WMO Intercomparison of High Quality Radiosonde Systems, held in Yangjiang, China, in July 2010. The effects of thermal and solar radiation errors are finally shown in contrast to the 10 other internationally used radiosonde systems, which were flown during this international campaign.


2020 ◽  
Author(s):  
Mahesh Kovilakam ◽  
Larry Thomason ◽  
Nicholas Ernest ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
...  

Abstract. A robust stratospheric aerosol climate data record enables the depiction of the radiative forcing of this highly variable component of climate. Since stratospheric aerosol also plays a key role in the chemical processes leading to ozone depletion, stratosphere is one of the crucial parameters in understanding climate change in the past and potential changes in the future. As a part of Stratospheric-tropospheric Processes and their Role in Climate (SPARC) Stratospheric Sulfur and its Role in Climate (SSiRC) activity, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) was created (Thomason et al., 2018) to support the World Climate Research Programme (WCRP)’s Coupled Model Intercomparison Project Phase 6 (CMIP6) (Zanchettin et al., 2016). This data set is a follow-on to one created as a part of Stratosphere-Troposphere Process and their Role in Climate Project (SPARC)’s Assessment of Stratospheric Aerosol Properties (ASAP) activity(SPARC, 2006) and a data created for Chemistry-Climate Model Initiative (CCMI) in 2012 (Eyring and Lamarque, 2012). Herein, we discuss changes to the original release version including those as a part of v1.1 that was released in September 2018 that primarily corrects an error in the conversion of Cryogenic Limb Array Etalon Spectrometer (CLAES) data to Stratospheric Aerosol and Gas Experiment (SAGE) II wavelengths, and the new release, v2.0. Version 2.0 is focused on improving the post-SAGE II era (after 2005) with the goal to mitigate elevated aerosol extinction in the lower stratosphere at mid and high latitudes noted in v1.0 as noted in Thomason et al. (2018). Changes include the use of version 7.0 of Optical Spectrograph and InfraRed Imaging System(OSIRIS), the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Lidar Level 3 Stratospheric Aerosol profile monthly product, and the new addition of SAGE III/ISS. Although, the version 7.0 OSIRIS data is substantially improved at its native wavelength of 750 nm, conversion to 525 nm using a constant Angstrom exponent often results in disagreements with SAGEII/ SAGE III/ISS overlap measurements. We, therefore use an observed relationship between OSIRIS extinction at 750 nm and SAGEII/SAGE III/ISS extinction at 525 nm to derive Altitude-Latitude based monthly climatology of Angstrom exponent to compute extinction at 525 nm, resulting in a better agreement between OSIRIS and SAGE measurements. We employ a similar approach to convert OSIRIS 750 nm extinction to 1020 nm extinction for the post-SAGEII period. Additionally, we incorporate the recently released standard CALIPSO stratospheric aerosol profile monthly product into GloSSAC with an improved conversion technique of 532 nm backscatter coefficient to extinction using an observed relationship between OSIRIS 525 nm extinction and CALIPSO 532 nm backscatter. We also investigate for any cloud contamination in OSIRIS/standard CALIPSO stratospheric aerosol product, which may have caused apparent enhancement in the aerosol extinction particularly in the lower stratosphere. SAGE III/ISS data is also incorporated in GloSSAC to extend the climatology to the present and to test the approach used to correct OSIRIS/CALIPSO data. The GloSSAC v2.0 netcdf file is accessible at https://doi.org/10.5067/glossac-l3-v2.0 (Thomason, 2020).


2014 ◽  
Vol 14 (21) ◽  
pp. 11687-11696 ◽  
Author(s):  
Q. S. He ◽  
C. C. Li ◽  
J. Z. Ma ◽  
H. Q. Wang ◽  
X. L. Yan ◽  
...  

Abstract. Vertical profiles of aerosol extinction coefficients were measured by a micro-pulse lidar at Naqu (31.5° N, 92.1° E; 4508 m a.m.s.l.), a meteorological station located on the central part of the Tibetan Plateau during summer 2011. Observations show a persistent maximum in aerosol extinction coefficients in the upper troposphere–lower stratosphere (UTLS). These aerosol layers were generally located at an altitude of 18–19 km a.m.s.l., 1–2 km higher than the tropopause, with broad layer depth ranging approximately 3–4 km and scattering ratio of 4–9. Daily averaged aerosol optical depths (AODs) of the enhanced aerosol layers in UTLS over the Tibetan Plateau varied from 0.007 to 0.030, in agreement with globally averaged levels of 0.018 ± 0.009 at 532 nm from previous observations, but the percentage contributions of the enhanced aerosol layers to the total AOD over the Tibetan Plateau are higher than those observed elsewhere. The aerosol layers in UTLS wore off gradually with the reducing intensity of the Asian monsoon over the Tibetan Plateau at the end of August. The eruption of Nabro volcano on 13 June 2011 is considered an important factor to explain the enhancement of tropopause aerosols observed this summer over the Tibetan Plateau.


1999 ◽  
Vol 42 (1) ◽  
Author(s):  
F. Masci

We report the features and the performances of the algorithms, developed at the Lidar Station of L'Aquila, for retrieving atmospheric parameters and constituents from elastic lidar signals. The algorithm for ozone retrieving is discussed in detail and checked with model lidar signals to take into account the numerical distortion on the profile. The performances of the aerosol backscattering ratio algorithm that includes the transmission loss due to the aerosol extinction are evaluated. A new algorithm developed to retrieve atmospheric temperature profiles from elastic lidar returns in the altitude range 30-90 km is also examined in detail.


2021 ◽  
Author(s):  
Liqiao Lei ◽  
Timothy A. Berkoff ◽  
Guillaume P. Gronoff ◽  
Jia Su ◽  
Amin R. Nehrir ◽  
...  

Abstract. Aerosols emitted from wildfires are becoming one of the main sources of poor air quality in the US mainland. Their extinction in UVB (wavelength range 280–315 nm) is difficult to be retrieved using simple lidar techniques because of the impact of O3 absorption and lacking information of lidar ratio at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) campaign in the New York City region allowed the characterization of lidar ratio for UVB aerosol retrieval. An algorithm for the aerosol extinction retrieval out of the Langley Mobile Ozone Lidar (LMOL) was used in conjunction with the NASA Langley High Altitude Lidar Observatory (HALO) 532 nm aerosol extinction product. This approach requires assuming 2 parameters, the lidar ratio at 292 nm and the Ångström Exponent (AE) between 532 nm and 292 nm. The objective of this work is to determine these two parameters and assess the retrieval error caused by improper assumption of lidar ratio. This work also accomplishes the first know 292 nm aerosol product inter-comparison between HALO and Tropospheric Ozone Lidar Network (TOLNet) ozone lidar. HALO results were compared with the aerosol data retrieved from the 292 nm band from LMOL with different approximations of the lidar ratio and the AE to determine optimal parameters. Using optimized parameters, the LMOL aerosol extinction can be retrieved with a 10 % accuracy up to 3 km. This work highlights the importance of the lidar ratio and AE in the retrieval and validation of 292 nm aerosol profiles obtained from UV-lidar. Errors arise from approaches that utilize a random priori lidar ratio and AE assumption. The lidar ratios at 292 nm determined in this work will also improve our understanding of the UVB optical properties of aerosol in the lower troposphere affected by transported wildfire emission.


2021 ◽  
Author(s):  
Xiaoxia Shang ◽  
Tero Mielonen ◽  
Antti Lipponen ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. Layers of biomass burning aerosol particles were observed in the lower troposphere, at 2 to 5 km height on 4 to 6 June 2019, over Kuopio, Finland. These long-range-transported smoke particles originated from a Canadian wildfire event. The most pronounced smoke plume detected on 5 June was intensively investigated. Optical properties were retrieved from the multi-wavelength Raman polarization lidar PollyXT. Particle linear depolarization ratios of this plume were measured to be 0.08 ± 0.02 at 355 nm and 0.05 ± 0.01 at 532 nm which were slightly higher than the values given in the literature. Non-spherical shaped aged smoke particles and/or the mixing with a small amount of fine dust particles could cause the observed increase in the particle linear depolarization ratios. Lidar ratios were derived as 47 ± 5 sr at 355 nm and 71 ± 5 sr at 532 nm. A complete ceilometer data processing for a Vaisala CL51 is presented, including the water vapor correction for high latitude for the first time, from sensor provided attenuated backscatter coefficient to particle mass concentration. A combined lidar and sun-photometer approach (based on AERONET products) is applied for mass concentration estimations. Mass concentrations were estimated from both PollyXT and the ceilometer CL51 observations, which were of the order of ~ 30 µg m−3 in the morning and decreased to ~ 20 µg m−3 in the night. A difference of ~ 30% was found between PollyXT and CL51 estimated mass concentrations. The mass retrievals were discussed and compared with the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorological and aerosol reanalysis. The inclusion of dust in the retrieved mass concentration slightly improved the correspondence between the observations and the MERRA-2 simulations.


2015 ◽  
Vol 15 (1) ◽  
pp. 1171-1191 ◽  
Author(s):  
D. Shin ◽  
D. Müller ◽  
K. Lee ◽  
S. Shin ◽  
Y. J. Kim ◽  
...  

Abstract. We report on the first Raman lidar measurements of stratospheric aerosol layers in the upper troposphere and lower stratosphere over Korea. The data were taken with the multiwavelength aerosol Raman lidar at Gwangju (35.10° N, 126.53° E), Korea. The volcanic ash particles and gases were released around 12 June 2011 during the eruption of the Nabro volcano (13.37° N, 41.7° E) in Eritrea, east Africa. Forward trajectory computations show that the volcanic aerosols were advected from North Africa to East Asia. The first observation of the stratospheric aerosol layers over Korea was on 19 June 2011. The stratospheric aerosol layers appeared between 15 and 17 km height a.s.l. The aerosol layers' maximum value of the backscatter coefficient and the linear particle depolarization ratio at 532 nm were 1.5 ± 0.3 Mm−1 sr−1 and 2.2%, respectively. We found these values at 16.4 km height a.s.l. 44 days after this first observation, we observed the stratospheric aerosol layer again. We continuously probed the upper troposphere and lower stratosphere for this aerosol layer during the following 5 months, until December 2011. The aerosol layers typically occurred between 10 and 20 km height a.s.l. The stratospheric aerosol optical depth and the maximum backscatter coefficient at 532 nm decreased during these 5 months.


Sign in / Sign up

Export Citation Format

Share Document