scholarly journals Impacts of updated spectroscopy on thermal infrared retrievals of methane evaluated with HIPPO data

2014 ◽  
Vol 7 (9) ◽  
pp. 10059-10107
Author(s):  
M. J. Alvarado ◽  
V. H. Payne ◽  
K. E. Cady-Pereira ◽  
J. D. Hegarty ◽  
S. S. Kulawik ◽  
...  

Abstract. Errors in the spectroscopic parameters used in the forward radiative transfer model can introduce altitude-, spatially-, and temporally-dependent biases in trace gas retrievals. For well-mixed trace gases such as methane, where the variability of tropospheric mixing ratios is relatively small, reducing such biases is particularly important. We use aircraft observations from all five missions of the HIAPER Pole-to-Pole Observations (HIPPO) of the Carbon Cycle and Greenhouse Gases Study to evaluate the impact of updates to spectroscopic parameters for methane (CH4), water vapor (H2O), and nitrous oxide (N2O) on thermal infrared retrievals of methane from the NASA Aura Tropospheric Emission Spectrometer (TES). We find that updates to the spectroscopic parameters for CH4 result in a substantially smaller mean bias in the retrieved CH4 when compared with HIPPO observations. After an N2O-based correction, the bias in TES methane upper tropospheric representative values for measurements between 50° S and 50° N decreases from 56.9 to 25.7 ppbv, while the bias in the lower tropospheric representative value increases only slightly (from 27.3 to 28.4 ppbv). For retrievals with less than 1.6 DOFS, the bias is reduced from 26.8 to 4.8 ppbv. We also find that updates to the spectroscopic parameters for N2O reduce the errors in the retrieved N2O profile.


2015 ◽  
Vol 8 (2) ◽  
pp. 965-985 ◽  
Author(s):  
M. J. Alvarado ◽  
V. H. Payne ◽  
K. E. Cady-Pereira ◽  
J. D. Hegarty ◽  
S. S. Kulawik ◽  
...  

Abstract. Errors in the spectroscopic parameters used in the forward radiative transfer model can introduce spatially, temporally, and altitude-dependent biases in trace gas retrievals. For well-mixed trace gases such as methane, where the variability of tropospheric mixing ratios is relatively small, reducing such biases is particularly important. We use aircraft observations from all five missions of the HIAPER Pole-to-Pole Observations (HIPPO) of the Carbon Cycle and Greenhouse Gases Study to evaluate the impact of updates to spectroscopic parameters for methane (CH4), water vapor (H2O), and nitrous oxide (N2O) on thermal infrared retrievals of methane from the NASA Aura Tropospheric Emission Spectrometer (TES). We find that updates to the spectroscopic parameters for CH4 result in a substantially smaller mean bias in the retrieved CH4 when compared with HIPPO observations. After an N2O-based correction, the bias in TES methane upper tropospheric representative values for measurements between 50° S and 50° N decreases from 56.9 to 25.7 ppbv, while the bias in the lower tropospheric representative value increases only slightly (from 27.3 to 28.4 ppbv). For retrievals with less than 1.6 degrees of freedom for signal (DOFS), the bias is reduced from 26.8 to 4.8 ppbv. We also find that updates to the spectroscopic parameters for N2O reduce the errors in the retrieved N2O profile.



2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.



2016 ◽  
Vol 9 (6) ◽  
pp. 2647-2668 ◽  
Author(s):  
Caroline R. Nowlan ◽  
Xiong Liu ◽  
James W. Leitch ◽  
Kelly Chance ◽  
Gonzalo González Abad ◽  
...  

Abstract. The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.



2020 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Kerstin Stebel ◽  
...  

<p>Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O<sub>2</sub>-O<sub>2</sub>) or O<sub>2</sub>A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving scattering of clouds in neighbouring pixels and cloud shadow effects. Therefore, to go one step further, other correction methods may be envisaged that use sub-pixel cloud information from co-located imagers. Such methods require an understanding of the impact of clouds on the real 3D radiative transfer. We quantify this impact using the MYSTIC 3D radiative transfer model. The generation of realistic 3D input cloud fields, needed by MYSTIC (or any other 3D radiative transfer model), is non-trivial. We use cloud data generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The model simulates realistic liquid and ice clouds with a horizontal spatial resolution of 156 m and it has been validated against ground-based and satellite-based observational data.</p><p>As a trace gas example, we study NO<sub>2</sub>, a key tropospheric trace gas measured by the atmospheric Sentinels. The MYSTIC 3D model simulates visible spectra, which are ingested in standard DOAS retrieval algorithms to retrieve the NO<sub>2</sub> column amount. Spectra are simulated for a number of realistic cloud scenarios, snow free surface albedos, and solar and satellite geometries typical of low-earth and geostationary orbits. The retrieved NO<sub>2</sub> vertical column densities (VCD) are compared with the true values to identify conditions where 3D cloud effects lead to significant biases on the NO<sub>2</sub> VCDs. A variety of possible mitigation strategies for such pixels are then explored.</p>



2009 ◽  
Vol 2 (6) ◽  
pp. 3221-3264
Author(s):  
J. Leitão ◽  
A. Richter ◽  
M. Vrekoussis ◽  
A. Kokhanovsky ◽  
Q. J. Zhang ◽  
...  

Abstract. The accurate determination of nitrogen dioxide (NO2) tropospheric vertical columns from satellite measurements depends, partly, on the airmass factor (AMF) used. A sensitivity study was performed with the radiative transfer model SCIATRAN to better understand the impact of aerosols in the calculation of NO2 AMFs. This influence was studied by varying the NO2 and aerosol vertical distributions, as well as physical and optical properties of the particles. The key factors for these calculations were identified as the relation between trace gas and aerosol vertical profiles, the optical depth of the aerosol layer, and single scattering albedo. Overall it was found that aerosol mixed with the trace gas increases the measurements' sensitivity. The largest change, a factor of ~2 relative to the situation without aerosols, was found when a low layer of aerosol (600 m) was combined with a homogenous NO2 layer of 1.0 km. A layer of aerosol above the NO2 will usually reduce the sensitivity of the satellite measurement, a situation found mostly for runs with discrete elevated aerosol layers representative for long-range transport of aerosols that can generate a decrease of the AMF values of up to 70%. The use of measured aerosol profiles and modelled NO2 resulted, generally, in a much smaller changes of AMF relative to the pure Rayleigh case. Exceptions are some events of elevated layers with high aerosol optical depth that lead to a strong decrease of the AMF values. These results highlight the importance of aerosols in the retrieval of tropospheric NO2 columns from space and indicate the need for detailed information on aerosol properties and vertical distribution.



2010 ◽  
Vol 3 (2) ◽  
pp. 475-493 ◽  
Author(s):  
J. Leitão ◽  
A. Richter ◽  
M. Vrekoussis ◽  
A. Kokhanovsky ◽  
Q. J. Zhang ◽  
...  

Abstract. The accurate determination of nitrogen dioxide (NO2) tropospheric vertical columns from satellite measurements depends strongly on the airmass factor (AMF) used. A sensitivity study was performed with the radiative transfer model SCIATRAN to better understand the impact of aerosols on the calculation of NO2 AMFs. This influence was studied by varying the NO2 and aerosol vertical distributions, as well as physical and optical properties of the particles. In terms of aerosol definitions, the key factors for these calculations were identified as the relation between trace gas and aerosol vertical profiles, the optical depth of the aerosol layer, and single scattering albedo. In addition, surface albedo also has a large impact on the calculations. Overall it was found that particles mixed with the trace gas increases the measurements' sensitivity, but only when the aerosol is not very absorbing. The largest change, a factor of ~2 relative to the situation without aerosols, was found when a low layer of aerosol (600 m) was combined with a homogenous NO2 layer of 1.0 km. A layer of aerosol above the NO2 usually reduces the sensitivity of the satellite measurement. This situation is found mostly for runs with discrete elevated aerosol layers (representative for long-range transport) that can generate a decrease of the AMF values of up to 70%. The use of measured aerosol profiles and modelled NO2 resulted, generally, in much smaller changes of AMF relative to the pure Rayleigh case. Exceptions are some events of elevated layers with high aerosol optical depth that lead to a strong decrease of the AMF values. These results highlight the importance of aerosols in the retrieval of tropospheric NO2 columns from space and indicate the need for detailed information on aerosol properties and vertical distribution.



2021 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Michel Van Roozendael ◽  
...  

<p>Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O2-O2) or O2A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving unresolved sub-pixel clouds, scattering of clouds in neighbouring pixels, and cloud shadow effects, such that 3D radiation scattering from unresolved boundary layer clouds may give significant biases in the trace gas retrievals. In order to quantify this impact, we use the MYSTIC 3D radiative transfer model to generate synthetic data. The realistic 3D cloud fields, needed for MYSTIC input, are generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The retrieval algorithm is applied to the synthetic data and comparison to the known input trace gas concentrations yields the retrieval error due to 3D cloud effects. <br>In this study, we study NO2, which is a key tropospheric trace gas measured by TROPOMI and the future atmospheric Sentinels (S4 and S5). The work starts with a sensitivity study for the simulations with a simple 2D box cloud. The influence of cloud parameters (e.g., cloud top height, cloud optical thickness), observation geometry, and spatial resolution are studied, and the most significant dependences of retrieval biases are identified and investigated. Several approaches to correct the NO2 retrieval in the cloud shadow are explored and ultimately applied to both synthetic data with realistic 3D clouds and real observations.</p>



2003 ◽  
Vol 3 (5) ◽  
pp. 1365-1375 ◽  
Author(s):  
M. Vountas ◽  
A. Richter ◽  
F. Wittrock ◽  
J. P. Burrows

Abstract. Over clear ocean waters, photons scattered within the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Scattering (VRS) by liquid water is also playing a role and can have a strong impact on the spectral distribution of the outgoing radiance. Under clear-sky conditions, VRS has an influence on trace gas retrievals from space-borne measurements of the backscattered radiance such as from e.g. GOME (Global Ozone Monitoring Experiment). The effect is particularly important for geo-locations with small solar zenith angles and over waters with low chlorophyll concentration. In this study, a simple ocean reflectance model (Sathyendranath and Platt, 1998) accounting for VRS has been incorporated into a radiative transfer model. The model has been validated by comparison with measurements from a swimming-pool experiment dedicated to detect the effect of scattering within water on the outgoing radiation and also with selected data sets from GOME. The comparisons show good agreement between experimental and model data and highlight the important role of VRS. To evaluate the impact of VRS on trace gas retrieval, a sensitivity study was performed on synthetic data. If VRS is neglected in the data analysis, errors of more than 30% are introduced for the slant column (SC) of BrO over clear ocean scenarios. Exemplarily DOAS retrievals of BrO from real GOME measurements including and excluding a VRS compensation led to comparable results as in the sensitivity study, but with somewhat smaller differences between the two analyses. The results of this work suggest, that DOAS retrievals of atmospheric trace species from measurements of nadir viewing space-borne instruments have to take VRS scattering into account over waters with low chlorophyll concentrations, and that a simple correction term is enough to reduce the errors to an acceptable level.



2002 ◽  
Vol 80 (4) ◽  
pp. 469-481 ◽  
Author(s):  
C A McLinden ◽  
J C McConnell ◽  
K Strong ◽  
I C McDade ◽  
R L Gattinger ◽  
...  

The optical spectrograph and infrared imaging system (OSIRIS), launched in 2001, is a UV–visible diffraction-grating instrument designed to measure light scattered from the Earth's limb. Laboratory measurements of the OSIRIS diffraction-grating efficiency reveal a sensitivity to polarization including an anomalous structure of width 20–30 nm introduced into light polarized in a direction perpendicular to the grooves of the grating. A vector radiative-transfer model was used to generate synthetic OSIRIS spectra in an effort to examine the effect of this on radiances and trace-gas retrievals. Radiances that included grating effects were found to deviate by nearly 10% from those that did not and also contained the anomalous structure. Performing differential optical absorption spectroscopy (DOAS) on these spectra revealed errors in ozone apparent column densities of up to 80 DU. The size of the error was controlled mainly by the difference in polarization between the two DOAS spectra. Two possible correction methods were investigated. The first was to remove the grating effects by applying a correction factor to the raw radiances calculated using the vector radiative-transfer model. The second was to include the efficiency coefficient spectra in the DOAS fit. PACS Nos.: 42.68Mj, 98.55Qf



2014 ◽  
Vol 7 (8) ◽  
pp. 2645-2665 ◽  
Author(s):  
J. Schmitt ◽  
B. Seth ◽  
M. Bock ◽  
H. Fischer

Abstract. Firn and polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15‰ for δ13C–CH4, 0.22‰ for δ15N–N2O, 0.34‰ for δ18O–N2O, and 0.05‰ per mass difference for δ136Xe for typical concentrations of glacial ice. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichlorodifluoromethane with reproducibilities of 7 ppb for CH4, 3 ppb for N2O, 70 ppt for C2H6, 70 ppt for C3H8, 20 ppt for CH3Cl, and 2 ppt for CCl2F2. However, the blank contribution for C2H6 and C3H8 is large in view of the measured values for Antarctic ice samples. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH4 is combusted to CO2 prior to detection while we bypass the oven for all other species. The highly automated system uses only ~ 160 g of ice, equivalent to ~ 16 mL air, which is less than previous methods. The measurement of this large suite of parameters on a single ice sample is new and key to understanding phase relationships of parameters which are usually not measured together. A multi-parameter data set is also key to understand in situ production processes of organic species in the ice, a critical issue observed in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ136Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn diffusion effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio, δXe/air, can be used to detect melt layers.



Sign in / Sign up

Export Citation Format

Share Document