Comment on “Unknown high-frequency (7–12 kHz) quasi-periodic VLF emissions observed on the ground at L ∼ 5.5” by J. Manninen et al.

2018 ◽  
Author(s):  
Anonymous
Keyword(s):  
2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Michel Parrot ◽  
Frantisěk Němec ◽  
Morris B. Cohen ◽  
Mark Gołkowski

AbstractA spectrogram of Power Line Harmonic Radiation (PLHR) consists of a set of lines with frequency spacing corresponding exactly to 50 or 60 Hz. It is distinct from a spectrogram of Magnetospheric Line Radiation (MLR) where the lines are not equidistant and drift in frequency. PLHR and MLR propagate in the ionosphere and the magnetosphere and are recorded by ground experiments and satellites. If the source of PLHR is evident, the origin of the MLR is still under debate and the purpose of this paper is to understand how MLR lines are formed. The ELF waves triggered by High-frequency Active Auroral Research Program (HAARP) in the ionosphere are used to simulate lines (pulses of different lengths and different frequencies). Several receivers are utilized to survey the propagation of these pulses. The resulting waves are simultaneously recorded by ground-based experiments close to HAARP in Alaska, and by the low-altitude satellite DEMETER either above HAARP or its magnetically conjugate point. Six cases are presented which show that 2-hop echoes (pulses going back and forth in the magnetosphere) are very often observed. The pulses emitted by HAARP return in the Northern hemisphere with a time delay. A detailed spectral analysis shows that sidebands can be triggered and create elements with superposed frequency lines which drift in frequency during the propagation. These elements acting like quasi-periodic emissions are subjected to equatorial amplification and can trigger hooks and falling tones. At the end all these known physical processes lead to the formation of the observed MLR by HAARP pulses. It is shown that there is a tendency for the MLR frequencies of occurrence to be around 2 kHz although the exciting waves have been emitted at lower and higher frequencies. Graphical Abstract


2017 ◽  
Vol 57 (1) ◽  
pp. 32-39 ◽  
Author(s):  
J. Manninen ◽  
T. Turunen ◽  
N. G. Kleimenova ◽  
L. I. Gromova ◽  
A. E. Kozlovskii

2018 ◽  
Vol 36 (3) ◽  
pp. 915-923 ◽  
Author(s):  
Jyrki Manninen ◽  
Natalia Kleimenova ◽  
Tauno Turunen ◽  
Liudmila Gromova

Abstract. We reveal previously unknown quasi-periodic (QP) very low frequency (VLF) emissions at the unusually high-frequency band of ∼ 7–12 kHz by applying the digital filtering of strong atmospherics to the ground-based VLF data recorded at Kannuslehto station (KAN). It is located in northern Finland at L ∼ 5.5. The frequencies of QP emissions are much higher than the equatorial electron gyrofrequency at L ∼ 5.5. Thus, these emissions must have been generated at much lower L shells than KAN. Two high-frequency QP emission events have been studied in detail. The emissions were right-hand polarized waves indicating an overhead location of the exit area of waves in the ionosphere. In one event, the spectral–temporal forms of the emissions looked like a series of giant “bullets” due to the very abrupt cessation. Unfortunately, we could not explain such a strange dynamic spectral shape of the waves. In the second event, the modulation period was about 3 min under the absence of simultaneous geomagnetic pulsations. The studied emissions lasted about 4 h and were observed under the very quiet geomagnetic activity. The adequate mechanisms of the generation and propagation of the revealed high-frequency QP emissions have not yet been established. We speculate that studied QP emissions can be attributed to the auto-oscillations of the cyclotron instability in the magnetospheric plasma maser.


2020 ◽  
Author(s):  
N.G. Kleimenova ◽  
◽  
J. Manninen ◽  
T. Turunen ◽  
L.I. Gromova ◽  
...  

The new typeof daytime natural VLF whistler mode emissions of the magnetospheric origin was recently found in the VLF observations at Kannuslehto station (L ~ 5.5) in Northern Finland.These VLF events occurred at the frequencies above 4-5 kHzeven up to 15 kHz. Here we present the different spectra of this peculiar daytime high-frequency VLF emissions observed under quiet geomagnetic conditions at auroral latitudes at Kannuslehto (Finland) and Lovozero (Russia) stations. These high-frequency waves cannot be attributed to typical well known VLF chorus and hiss. They became visible on the spectrograms only after the filtering out sferics originating by the lightning discharges and hiding all natural high-frequency signals. After this filtering, it was found a large collection of different natural VLF signals observed as a sequence of right-polarized short (less than 1-2 minutes) patches at frequencies above 4-5 kHz, i.e. at higher frequencythan a half the equatorial electron gyrofrequency at the L-shell of Kannuslehto and Lovozero. These emissions were called “birds” due to their chirped sounds. It was established that the “birds” are typically occur during the daytime only under quiet space weather conditions. But in this time, small magnetic substorms were could be observed in the night sector of the Earth. Here we also show the recently observed series of the “bird-mode” emissions with various bizarre quasi-periodic dynamic spectra, sometimes consisting of two (and even more) frequency bands. The “birds” occur simultaneously at Kannuslehto and Lovozero with similar spectral structure demonstrating their common source. It seems that the “birds” emissions are generated deep inside the magnetosphere at the low L-shells. But the real nature, the generation region and propagation behavior of these VLF emissions remain still unknown. Moreover, nobody can explain how the waves could reach the ground at the auroral latitudes like Kannuslehto and Lovozero as well as which magnetospheric driver could generate this very complicated spectral feature of the emissions.


2018 ◽  
Author(s):  
J. Manninen ◽  
T. Turunen ◽  
N.G. Kleimenova ◽  
M.J. Rycroft ◽  
L.I. Gromova

2018 ◽  
Author(s):  
Jyrki Manninen ◽  
Natalia Kleimenova ◽  
Tauno Turunen ◽  
Liudmila Gromova

Abstract. We reveal previously unknown quasi-periodic (QP) VLF emissions at the unusual high-frequency band of ~ 7–11 kHz by applying the digital filtering of strong sferics to the ground-based VLF data recorded at Kannuslehto station (KAN). It is located in Northern Finland at L ~ 5.5. The frequencies of QP emissions are much higher than the equatorial electron gyrofrequency at L ~ 5.5. Thus, these emissions must have been generated at much lower L-shells than KAN. Two high-frequency QP emission events have been studied in detail. The emissions were right-hand polarized waves indicating an overhead location of the exit area of waves in the ionosphere. In one event, the spectral-temporal forms of the emissions looked like a series of giant bullets with the very abrupt cessation. Unfortunately, we could not explain such strange shape of the waves. In the second event, the modulation period was about 3 min under the absence of the simultaneous geomagnetic pulsations. The studied emissions lasted about 4 hours and were observed under the very quiet geomagnetic activity. The adequate mechanisms of the generation and propagation of the revealed high-frequency QP emissions have not yet been established. We speculate that studied QP emissions can be attributed to the auto-oscillations of the cyclotron instability in the magnetospheric plasma maser.


Author(s):  
W. E. Lee ◽  
A. H. Heuer

IntroductionTraditional steatite ceramics, made by firing (vitrifying) hydrous magnesium silicate, have long been used as insulators for high frequency applications due to their excellent mechanical and electrical properties. Early x-ray and optical analysis of steatites showed that they were composed largely of protoenstatite (MgSiO3) in a glassy matrix. Recent studies of enstatite-containing glass ceramics have revived interest in the polymorphism of enstatite. Three polymorphs exist, two with orthorhombic and one with monoclinic symmetry (ortho, proto and clino enstatite, respectively). Steatite ceramics are of particular interest a they contain the normally unstable high-temperature polymorph, protoenstatite.Experimental3mm diameter discs cut from steatite rods (∼10” long and 0.5” dia.) were ground, polished, dimpled, and ion-thinned to electron transparency using 6KV Argon ions at a beam current of 1 x 10-3 A and a 12° angle of incidence. The discs were coated with carbon prior to TEM examination to minimize charging effects.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


Sign in / Sign up

Export Citation Format

Share Document