scholarly journals Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: a review

2004 ◽  
Vol 22 (11) ◽  
pp. 3869-3887 ◽  
Author(s):  
R. Wilson

Abstract. The actual impact on vertical transport of small-scale turbulence in the free atmosphere is still a debated issue. Numerous estimates of an eddy diffusivity exist, clearly showing a lack of consensus. MST radars were, and continue to be, very useful for studying atmospheric turbulence, as radar measurements allow one to estimate the dissipation rates of energy (kinetic and potential) associated with turbulent events. The two commonly used methods for estimating the dissipation rates, from the backscattered power and from the Doppler width, are discussed. The inference methods of a local diffusivity (local meaning here "within" the turbulent patch) by using the dissipation rates are reviewed, with some of the uncertainty causes being stressed. Climatological results of turbulence diffusivity inferred from radar measurements are reviewed and compared. As revealed by high resolution MST radar measurements, atmospheric turbulence is intermittent in space and time. Recent theoretical works suggest that the effective diffusivity of such a patchy turbulence is related to statistical parameters describing the morphology of turbulent events: filling factor, lifetime and height of the patches. It thus appears that a statistical description of the turbulent patches' characteristics is required in order to evaluate and parameterize the actual impact of small-scale turbulence on transport of energy and materials. Clearly, MST radars could be an essential tool in that matter.

2005 ◽  
Vol 22 (9) ◽  
pp. 1326-1339 ◽  
Author(s):  
Richard Wilson ◽  
Francis Dalaudier ◽  
Francois Bertin

Abstract Small-scale turbulence in the free atmosphere is known to be intermittent in space and time. The turbulence fraction of the atmosphere is a key parameter in order to evaluate the transport properties of small-scale motions and to interpret clear-air radar measurements as well. Mesosphere–stratosphere–troposphere (MST)/stratosphere–troposphere (ST) radars provide two independent methods for the estimation of energetic parameters of turbulence. First, the Doppler spectral width σ2 is related to the dissipation rate of kinetic energy εk. Second, the radar reflectivity, or C2n, relates to the dissipation rate of available potential energy εp. However, these two measures yield estimates that differ with respect to an important point. The Doppler width measurements, and related εk, are reflectivity-weighted averages. On the other hand, the reflectivity estimate is a volume-averaged quantity. The values of εp depend on both the turbulence intensity and the turbulent fraction within the radar sampling volume. Now, the two dissipation rates εp and εk are related quantities as shown by various measurements within stratified fluids (atmosphere, ocean, lakes, or laboratory). Therefore, by assuming a “canonical” value for the ratio of dissipation rates, an indirect method is proposed to infer the turbulent fraction from simultaneous radar measurements of reflectivity and Doppler broadening within a sampling volume. This method is checked by using very high resolution radar measurements (30 m and 51 s), obtained by the PROUST radar during a field campaign. The method is found to provide an unbiased estimation of the turbulent fraction, within a factor of 2 or less.


1962 ◽  
Vol 13 (1) ◽  
pp. 77-81 ◽  
Author(s):  
A. M. Oboukhov

The spectrum of atmospheric turbulence is very broad by comparison with spectra in wind tunnels. We introduce the notion of small-scale and large-scale turbulence. Small-scale turbulence consists of a set of disturbances, the scales of which do not exceed the distance to the wall and for which the hypothesis of three-dimensional isotropy is valid in a certain rough approximation. Large-scale turbulence is essentially anisotropic; the horizontal scale in the atmosphere is much larger than the vertical one, the latter being confined to a certain characteristic height H. The horizontal scale varies widely according to the external conditions and characteristics of the medium.


2011 ◽  
Vol 4 (5) ◽  
pp. 795-804 ◽  
Author(s):  
R. Wilson ◽  
F. Dalaudier ◽  
H. Luce

Abstract. It has been recently proposed by Clayson and Kantha (2008) to evaluate the climatology of atmospheric turbulence through the detection of overturns in the free atmosphere by applying a Thorpe analysis on relatively low vertical resolution (LR) profiles collected from standard radiosoundings. Since then, several studies based on this idea have been published. However, the impact of instrumental noise on the detection of turbulent layers was completely ignored in these works. The present study aims to evaluate the feasibility of overturns detection from radiosoundings. For this purpose, we analyzed data of two field campaigns during which high-resolution (HR) soundings (10–20 cm) were performed simultaneously with standard LR soundings. We used the raw data of standard meteorological radiosondes, the vertical resolution ranging from 5 to 9 m. A Thorpe analysis was applied to both LR and HR potential temperature profiles. A denoising procedure was first applied in order to reduce the probability of occurrence of artificial overturns, i.e. potential temperature inversions due to instrumental noise only. We then compared the empirical probability density functions (pdf) of the sizes of the selected overturns from LR and HR profiles. From HR profiles measured in the troposphere, the sizes of the detected overturns range from 4 to ~1000 m. The shape of the size pdf of overturns is found to sharply decrease with increasing scales. From LR profiles, the smallest size of detected overturns is ~32 m, a similar decrease in the shape of the pdf of sizes being observed. These results suggest that overturns, resulting either from small-scale turbulence or from instabilities, can indeed be detected from meteorological radiosonde measurements in the troposphere and in the stratosphere as well. However they are rather rare as they belong to the tail of the size distribution of overturns: they only represent the 7 % largest events in the troposphere, and 4 % in the stratosphere.


2011 ◽  
Vol 4 (1) ◽  
pp. 969-1000 ◽  
Author(s):  
R. Wilson ◽  
F. Dalaudier ◽  
H. Luce

Abstract. It has been recently proposed by Clayson and Kantha (2008) to evaluate the climatology of atmospheric turbulence in the free atmosphere by applying a Thorpe analysis on standard radiosoundings obtained with relatively low resolution (LR) in the vertical. Since then, several studies based on this idea have been published. However, the impact of instrumental noise on the detection of turbulent layers was completely ignored in these works. The present study aims to evaluate the feasibility of turbulence detection from radiosoundings. For this purpose, we analyzed data of two field campaigns during which high-resolution (HR) soundings (10–20 cm) were performed simultaneously with standard LR soundings. We here used the raw data of standard radiosondes, the vertical resolution ranging from 5 to 8 m. A Thorpe analysis was performed on both LR and HR potential temperature profiles. A denoising procedure was first applied in order to reduce the probability of occurrence of artificial inversions, i.e. inversions due to instrumental noise only. We then compare the empirical probability of the sizes of the selected overturns from LR and HR profiles. From HR profiles in the troposphere, the scales of the detected turbulent overturns range from 4 to ~1000 m. The shape of the distribution of the size of overturns is found to sharply decrease with increasing scales. From LR profiles, the smallest scale of detected overturns is ~32 m, a similar decrease in the shape of the size distribution being observed. These results suggest that turbulent events can indeed be detected from standard radiosondes measurements in the troposphere. However these events are rather rare as they belong to the tail of the size distribution of the turbulent overturns: they only represent the 7% largest events. Similar conclusions are obtained from radiosondes data collected in the lower stratosphere, but the fraction of the detectable events is even smaller than in the troposphere since they are the 4% largest events.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1351
Author(s):  
Miryam E. Paredes Quintanilla ◽  
Shahbozbek Abdunabiev ◽  
Marco Allegretti ◽  
Andrea Merlone ◽  
Chiara Musacchio ◽  
...  

Characterization of dynamics inside clouds remains a challenging task for weather forecasting and climate modeling as cloud properties depend on interdependent natural processes at micro- and macro-scales. Turbulence plays an important role in particle dynamics inside clouds; however, turbulence mechanisms are not yet fully understood partly due to the difficulty of measuring clouds at the smallest scales. To address these knowledge gaps, an experimental method for measuring the influence of small-scale turbulence in cloud formation in situ and producing an in-field cloud Lagrangian dataset is being developed by means of innovative ultralight radioprobes. This paper presents the electronic system design along with the obtained results from laboratory and field experiments regarding these compact (diameter ≈30 cm), lightweight (≈20 g), and expendable devices designed to passively float and track small-scale turbulence fluctuations inside warm clouds. The fully customized mini-radioprobe board (5 cm × 5 cm) embeds sensors to measure local fluctuations and transmit data to the ground in near real time. The tests confirm that the newly developed probes perform well, providing accurate information about atmospheric turbulence as referenced in space. The integration of multiple radioprobes allows for a systematic and accurate monitoring of atmospheric turbulence and its impact on cloud formation.


2001 ◽  
Vol 19 (8) ◽  
pp. 945-952 ◽  
Author(s):  
J. Dole ◽  
R. Wilson ◽  
F. Dalaudier ◽  
C. Sidi

Abstract. Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz) and is located in St. Santin, France (44°39’ N, 2°12’ E). A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .Key words. Meteorology and atmospheric dynamics (turbulence) – Radio science (remote sensing)


2017 ◽  
Vol 9 (5) ◽  
pp. 1035-1051
Author(s):  
Yikun Wei ◽  
Hua-Shu Dou ◽  
Zuchao Zhu ◽  
Zhengdao Wang ◽  
Yuehong Qian ◽  
...  

AbstractNumerical simulations of two-dimensional (2D) turbulent thermal convection for inhomogeneous boundary condition are investigated using the lattice Boltzmann method (LBM). This study mainly appraises the temporal evolution and the scaling behavior of global quantities and of small-scale turbulence properties. The research results show that the flow is dominated by large-scale structures in the turbulence regime. Mushroom plumes emerge at both ends of each heat source, and smaller plumes increasingly rise. It is found that the gradient of root mean-square (rms) vertical velocities and the gradient of the rms temperature in the bottom boundary layer decreases with time evolution. It is further observed that the temporal evolution of the Kolmogorov scale, the kinetic-energy dissipation rates and thermal dissipation rates agree well with the theoretical predictions. It is also observed that there is a range of linear scaling in the 2nd-order structure functions of the velocity and temperature fluctuations and mixed velocity-temperature structure function.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zhuo Wang ◽  
Kun Luo ◽  
Junhua Tan ◽  
Dong Li ◽  
Jianren Fan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document