scholarly journals Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination

2005 ◽  
Vol 23 (6) ◽  
pp. 2069-2079 ◽  
Author(s):  
H. Wang ◽  
H. Lühr ◽  
S. Y. Ma ◽  
P. Ritter

Abstract. Based on 1829 well-defined substorm onsets in the Northern Hemisphere, observed during a 2-year period by the FUV Imager on board the IMAGE spacecraft, a statistical study is performed. From the combination of solar wind parameter observations by ACE and magnetic field observations by the low altitude satellite CHAMP, the location of auroral breakups in response to solar illumination and solar coupling parameters are studied. Furthermore, the correspondence of the onset location with prominent large-scale field-aligned currents and electrojets are investigated. Solar illumination and the related ionospheric conductivity have significant effects on the most probable substorm onset latitude and local time. In sunlight, substorm onsets tend to occur 1h earlier in local time and 1.5° more poleward than in darkness. The solar wind input, represented by the merging electric field, integrated over 1h prior to the substorm, correlates well with the latitude of the breakup. Most poleward latitudes of the onsets are found to range around 73° magnetic latitude during very quiet times. Field-aligned and Hall currents observed concurrently with the onset are consistent with the signature of a westward travelling surge evolving out of the Harang discontinuity. The observations suggest that the ionospheric conductivity has an influence on the location of the precipitating energetic electron which causes the auroral break-up signature. Keywords. Ionosphere (Auroral ionosphere) – Magnetospheric Physics (Current systems; Magnetosphereionosphere interactions)

2007 ◽  
Vol 25 (4) ◽  
pp. 989-999 ◽  
Author(s):  
H. Wang ◽  
H. Lühr ◽  
S. Y. Ma ◽  
H. U. Frey

Abstract. Based on 2760 well-defined substorm onsets in the Northern Hemisphere and 1432 in the Southern Hemisphere observed by the FUV Imager on board the IMAGE spacecraft, a detailed statistical study is performed including both auroral regions. This study focuses on the hemispheric comparisons. Southward pointing interplanetary magnetic field (IMF) is favorable for substorm to occur, but still 30% of the events are preceded by northward IMF. The magnetic latitude (MLat) of substorm onset depends mainly on the merging electric field (Em) with a relationship of |dMLat|= −5.2 Em0.5, where dMLat is the deviation from onset MLat. In addition, seasonal effects on onset MLat are also detected, with about 2 degrees higher latitudes during solstices than equinoxes. Both IMF By and solar illumination have a significant influence on the magnetic local time (MLT) of onsets. An average relation, dMLT=0.25 By between IMF By and the deviation from onset MLT, was found. The By dependence varies slightly with the onset latitude. At lower latitudes (higher activity) it is reduced. After removal of the relationship with IMF By a linear relationships remains between the solar zenith angle and onset MLT with dMLT=1 min/deg. Therefore, both solar illumination and IMF By can contribute to hemispheric longitudinal displacements of substorm onset locations from conjugacy. No indications for systematic latitudinal displacements between the hemispheres have been found.


2020 ◽  
Author(s):  
Karine Issautier ◽  
Mingzhe Liu ◽  
Michel Moncuquet ◽  
Nicole Meyer-Vernet ◽  
Milan Maksimovic ◽  
...  

<p>We present in situ properties of electron density and temperature in the inner heliosphere obtained during the three first solar encounters at 35 solar radii of the Parker Solar Probe mission. These preliminary results, recently shown by Moncuquet et al., ApJS, 2020, are obtained from the analysis of the plasma quasi-thermal noise (QTN) spectrum measured by the radio RFS/FIELDS instrument along the trajectories extending between 0.5 and 0.17 UA from the Sun, revealing different states of the emerging solar wind, five months apart. The temperature of the weakly collisional core population varies radially with a power law index of about -0.8, much slower than adiabatic, whereas the temperature of the supra-thermal population exhibits a much flatter radial variation, as expected from its nearly collisionless state. These measured temperatures are close to extrapolations towards the Sun of Helios measurements.</p><p>We also present a statistical study from these in situ electron solar wind parameters, deduced by QTN spectroscopy, and compare the data to other onboard measurements. In addition, we focus on the large-scale solar wind properties. In particular, from the invariance of the energy flux, a direct relation between the solar wind speed and its density can be deduced, as we have already obtained based on Wind continuous in situ measurements (Le Chat et al., Solar Phys., 2012). We study this anti-correlation during the three first solar encounters of PSP.</p>


Author(s):  
Solène Lejosne ◽  
Mariangel Fedrizzi ◽  
Naomi Maruyama ◽  
Richard S. Selesnick

Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt.


2002 ◽  
Vol 20 (2) ◽  
pp. 275-280 ◽  
Author(s):  
T. K. Yeoman ◽  
P. G. Hanlon ◽  
K. A. McWilliams

Abstract. The large-scale and continuous monitoring of the ionospheric cusp region offered by HF radars has been exploited in order to examine the statistical location and motion of the equatorward edge of the HF radar cusp as a function of the upstream IMF BZ component. Although a considerable scatter is seen, both parameters have a clear influence from the north-south component of the IMF. Excellent agreement is achieved with previous observations from low altitude spacecraft data. The HF radar cusp region is seen to migrate equatorward at a rate of 0.02° min-1 nT-1 under IMF BZ south conditions, but remains static for IMF BZ north. The motion of the cusp implies an addition of magnetic flux of ~ 2 × 104 Wbs-1 nT-1 under IMF BZ south conditions, equivalent to a reconnection voltage of 20 kV nT-1, which is consistent with previous estimates from case studies on both the dayside and nightside regions.Key words. Ionosphere (auroral ionosphere) – Magnetospheric physics (magnetosphere-ionosphere interaction; solar wind magnetosphere interactions)


2009 ◽  
Vol 27 (5) ◽  
pp. 1875-1886 ◽  
Author(s):  
F. Pitout ◽  
C. P. Escoubet ◽  
B. Klecker ◽  
I. Dandouras

Abstract. In this second part of our statistical study of the mid-altitude cusp, we compare the cusp morphology, as seen in the Cluster ion spectrometer (CIS), to the interplanetary magnetic field (IMF) orientation. We first recall the method we have used a) to define the cusp properties, b) to sort IMF conditions or behaviour in classes, c) to determine the proper time delay between the solar wind monitors and Cluster. Then, we define a few morphological features of the cusp and we relate these to the prevailing IMF. Our results reveal, among other things, that the occurrence of clearly dispersed ion structures in the cusp is 48%. From these dispersions, we infer the distance to reconnection site, which we relate to external conditions. In all other cases, the cusp exhibits a more disturbed behaviour in terms of ion structures and fall in our "discontinuous" or "irregular" categories. Among these, a few interesting cases of discontinuous cusps occurring under stable IMF conditions have been identified. They all occur when the IMF is dominated by its Y-component, which plays in principle in favour of anti-parallel reconnection but their wide MLT and latitudinal distributions is a priori incompatible with the anti-parallel reconnection hypothesis solely.


2009 ◽  
Vol 27 (7) ◽  
pp. 2813-2830 ◽  
Author(s):  
S. Mende ◽  
V. Angelopoulos ◽  
H. U. Frey ◽  
E. Donovan ◽  
B. Jackel ◽  
...  

Abstract. The unprecedented coverage of the THEMIS GBO station network coupled with high temporal and spatial resolution allowed us to determine the various stages of the global scale developments of the optical aurora at substorm onsets. We identified several steps of the substorm onset auroral phenomena and we suggest that the most rapid development is the starting of the Substorm Poleward Expansion (SPE) and it is most useful for accurate timing of the substorm onset. The physical significance of this step is the start of the large scale substorm energy dissipation in the atmosphere due to particle precipitation and auroral electrojet currents. We also recognized several pre-cursor features. We also measured the time of arrival of magnetic impulses associated with the same substorms at the THEMIS satellites. We used these times and a simple model with assumed iono-acoustic speeds in the range of 300–800 km/s to calculate the location and time of the origin of the magnetic impulses propagating from substorm onset. The assumption was made that the substorm occurred between two THEMIS satellites and the impulses propagated away from a singular starting point in and out along the magneto tail GSM-x axis. This technique is only useful in cases where the ground based signature of the substorm is very close in local time (or longitude) to the foot of the field lines of the THEMIS satellites. The x distance of the calculated origins were naturally highly dependent on the assumed propagation velocity model and the associated magneto-sonic speed. The resulting x distances of the starting point for the three events ranged between 11 and 17.6 RE. denoting a starting region that requires highly stretched field lines to map to the auroral onset latitude but which is generally considered to be too close for neutral line formation. The corresponding start times were in the range of 0 to 170 s prior SPE depending strongly on the assumed propagation speed.


2004 ◽  
Vol 22 (8) ◽  
pp. 2775-2783 ◽  
Author(s):  
K. Haraguchi ◽  
H. Kawano ◽  
K. Yumoto ◽  
S. Ohtani ◽  
T. Higuchi ◽  
...  

Abstract. The present study statistically examines the dependence of the intensities of dayside (MLT=8-12h) large-scale field-aligned currents (FACs) on the ionospheric conductance using the summary data of DMSP-F7 constructed by the procedure of Higuchi and Ohtani (2000). We have found that, in the dayside region, R1 and R0 have a higher correlation between ionospheric conductivity and FAC intensity than R2, suggesting that R0 and R1 are driven by a more voltage-like source than R2. This result is consistent with the idea that R1 and R0 are driven by the interaction between the solar wind and the open magnetospheric magnetic field. We have also found that dayside FAC intensities are latitudinally well balanced when they have a three sheet structure (R0, R1 and R2); on the other hand, for a two sheet structure (R1 and R2), the intensity of R1 is larger than that of R2, so that the net current has the polarity of R1.


1996 ◽  
Vol 14 (6) ◽  
pp. 608-618 ◽  
Author(s):  
T. Iyemori ◽  
D. R. K. Rao

Abstract. In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called `mid-latitude positive bay\\'; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is re-examined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem.


2011 ◽  
Vol 116 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. Boudouridis ◽  
L. R. Lyons ◽  
E. Zesta ◽  
J. M. Weygand ◽  
A. J. Ribeiro ◽  
...  

2020 ◽  
Author(s):  
Yuri Yermolaev ◽  
Irina Lodkina ◽  
Alexander Khokhlachev ◽  
Michael Yermolaev ◽  
Natalia Borodkova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document