scholarly journals Flux pile-up and plasma depletion at the high latitude dayside magnetopause during southward interplanetary magnetic field: a cluster event study

2005 ◽  
Vol 23 (6) ◽  
pp. 2259-2264 ◽  
Author(s):  
T. Moretto ◽  
D. G. Sibeck ◽  
B. Lavraud ◽  
K. J. Trattner ◽  
H. Rème ◽  
...  

Abstract. An event of strong flux pile-up and plasma depletion at the high latitude magnetopause tailward of the cusp has been analyzed based on observations by the suite of Cluster spacecraft. The multi-satellite analysis facilitates the separation of temporal and spatial features and provides a direct estimate for the strength of the plasma depletion layer for this event. A doubling of the magnetic field strength and a forty percent reduction of the density are found. Our analysis shows that roughly half of the total magnetic field increase occurs within 0.6 RE of the magnetopause and another quarter within a distance of 1.2 RE. In addition, the plasma depletion signatures exhibit temporal variations which we relate to magnetopause dynamics. Keywords. Magnetospheric physics (Magnetopause, Cusp and boundary layers; Magnetosheath; Solar windmagnetosphere interactions)

2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


2004 ◽  
Vol 111 (1/2) ◽  
pp. 185-202 ◽  
Author(s):  
Marit Øieroset ◽  
David L. Mitchell ◽  
Tai D. Phan ◽  
Robert P. Lin ◽  
Dana H. Crider ◽  
...  

1994 ◽  
Vol 12 (7) ◽  
pp. 642-648 ◽  
Author(s):  
A. S. Rodger ◽  
M. Pinnock ◽  
J. R. Dudeney ◽  
J. Waterman ◽  
O. de la Beaujardiere ◽  
...  

Abstract. The presence of polar patches as observed simultaneously in the same magnetic meridian of opposite nightside ionospheres by coherent and incoherent scatter radars are described. The patches appear to be related to variations either in the Bz or By component of the interplanetary magnetic field which cause transient merging on the dayside magnetopause. The passage and characteristics of polar patches as they traverse the polar cap into the nightside auroral oval are not significantly affected by the occurrence of small substroms. This study illustrates how the observations of polar patches in the nightside high-latitude ionosphere could be of great value in determining their formation process.


1991 ◽  
Vol 05 (11) ◽  
pp. 779-787
Author(s):  
K. SUGAWARA ◽  
D.J. BAAR ◽  
Y. SHIOHARA ◽  
S. TANAKA

The ESR linewidth (∆H pp ) of DPPH coated on the surface of powder specimens of Y 1 Ba 2 Cu 3 O y has been studied under various magnetic field and temperature conditions. ∆H pp increases substantially with decreasing temperature in the field cooled case, whereas almost no linewidth broadening was found in the zero field cooled case. ∆H pp was found to be sensitive to the applied magnetic field. This effect was very pronounced at temperatures lower than 40 K, but decreased strongly with increasing temperature. The broadening of the resonance lineshape has been attributed to spatial and temporal variations of the fluxon distribution in the powder particles.


2015 ◽  
Vol 42 (18) ◽  
pp. 7248-7254 ◽  
Author(s):  
K. M. Laundal ◽  
S. E. Haaland ◽  
N. Lehtinen ◽  
J. W. Gjerloev ◽  
N. Østgaard ◽  
...  

2012 ◽  
Vol 9 (7) ◽  
pp. 2793-2819 ◽  
Author(s):  
L. Meng ◽  
P. G. M. Hess ◽  
N. M. Mahowald ◽  
J. B. Yavitt ◽  
W. J. Riley ◽  
...  

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model, because there are large differences between simulated fractional inundation and satellite observations, and thus we do not use CLM4-simulated hydrology to predict inundated areas. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid-cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1 (including the soil sink) and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78% of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. However, sensitivity studies show a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions (excluding emissions from rice paddies). The large range is sensitive to (1) the amount of methane transported through aerenchyma, (2) soil pH (±100 Tg CH4 yr−1), and (3) redox inhibition (±45 Tg CH4 yr−1). Results are sensitive to biases in the CLMCN and to errors in the satellite inundation fraction. In particular, the high latitude methane emission estimate may be biased low due to both underestimates in the high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4.


2007 ◽  
Vol 73 (1) ◽  
pp. 89-115 ◽  
Author(s):  
LARS G. WESTERBERG ◽  
HANS O. ÅKERSTEDT

Abstract.A compressible model of the magnetosheath plasma flow is considered. Magnetic reconnection is assumed to occur in a region stretching from the sub-Solar point to the north. Two locations of the reconnection site are treated: two and four Earth radii from the sub-Solar point, respectively. By treating the transition layer as very thin, we solve the governing equations approximately using the method of matched asymptotic expansions. The behavior of the magnetic field and the plasma velocity close to a reconnection site during the transition from the magnetosheath to the magnetosphere is investigated. We also obtain the development of the transition layer thickness north and south of the reconnection point. The magnetopause transition layer is represented by a large-amplitude Alfvén wave implying that the density is approximately the same across the magnetopause boundary. In order to match the solutions we consider a compressible ideal magnetohydrodynamic model describing density, velocity and magnetic field variations along the outer magnetopause boundary. We also compare the analytical results with solutions from a numerical simulation. The compressible effects on the structure of the magnetic field and the total velocity evolution are visible but not dramatic. It is shown that the transition layer north of the reconnection point is thinner than to the south. The effect is stronger for reconnection at higher latitudes.


2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>


Sign in / Sign up

Export Citation Format

Share Document