scholarly journals The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse

2009 ◽  
Vol 27 (1) ◽  
pp. 179-184 ◽  
Author(s):  
H. Le ◽  
L. Liu ◽  
X. Yue ◽  
W. Wan

Abstract. We investigate the ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse, on the basis of observations of electron temperature (Te) from the Defense Meteorological Satellites Program (DMSP) spacecraft, F2 layer critical frequency (foF2) and F2 layer peak height (hmF2) at the Grahamstown ionosonde station, and total electron content (TEC) from the Global Positioning System (GPS) station SUTH. The observations show that when the eclipse occurred in the Northern Hemisphere, there was a decrease in Te, an increase in foF2 and TEC, and an uprising in hmF2 in its conjugate region compared with their reference values. We also simulated the ionosphere behavior during this eclipse using a mid- and low-latitude ionospheric model. The simulations agree well with the observations. Because of the eclipse effect, there are far fewer photoelectrons travelling along the magnetic field lines from the eclipse region to the conjugate region, resulting in reduced photoelectron heating in the conjugate hemisphere which causes a drop in electron temperature and subsequent disturbances in the region.

2013 ◽  
Vol 31 (11) ◽  
pp. 1891-1898 ◽  
Author(s):  
Y. J. Chuo

Abstract. On 21 May 2012 (20:56, Universal Time; UT, on 20 May), an annular solar eclipse occurred, beginning at sunrise over southeast China and moving through Japan, sweeping across the northern Pacific Ocean, and completing its passage over the western United States at sunset on 20 May 2012 (02:49 UT, 21 May). We investigated the eclipse area in Taiwan, using an ionosonde and global positioning system (GPS) satellite measurements. The measurements of foF2, hmF2, bottomside scale height around the peak height (Hm), and slab thickness (B0) were collected at the ionosonde station at Chung-Li Observatory. In addition, we calculated the total electron content (TEC) to study the differences inside and outside the eclipse area, using 3 receivers located at Marzhu (denoted as MATZ), Hsinchu (TNML), and Henchun (HENC). The results showed that the foF2 values gradually decreased when the annularity began and reached a minimum level of approximately 2.0 MHz at 06:30 LT. The hmF2 immediately decreased and then increased during the annular eclipse period. The TEC variations also appeared to deplete in the path of the eclipse and opposite the outside passing area. Further, the rate of change of the TEC values (dTEC / dt measured for 15 min) was examined to study the wave-like fluctuations. The scale height near the F2 layer peak height (Hm) also decreased and then increased during the eclipse period. To address the effects of the annular eclipse in the topside and bottomside ionosphere, this study provides a discussion of the variations between the topside and bottomside ionospheric parameters during the eclipse period.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Olga Maltseva ◽  
Natalia Mozhaeva

Defining ionospheric conditions, the deviation of the observational value of the total electron content TEC(obs), measured by means of navigation satellites, from a median is a bench mark. According to more than 40 ionospheric stations during April 2014 it is shown that synchronism of change of deviations of TEC and critical frequency foF2 of the ionosphere is kept under quiet and moderate disturbed conditions. This fact allows to use a median of the equivalent slab thicknessτ(med) as a reliable calibration factor to calculate foF2 from TEC(obs). The efficiency coefficient of joint use ofτ(med) and TEC(obs) changes from 1.5 to 4 with average value 2.2 across the globe. The highest coefficient corresponds to middle latitudes, however the estimations obtained for high- and low-latitude areas indicate possibility to useτ(med) and TEC(obs) in these areas.


2019 ◽  
Author(s):  
Wahyu Srigutomo ◽  
Alamta Singarimbun ◽  
Winda Meutia ◽  
I Gede Putu Fadjar Soerya Djaja ◽  
Buldan Muslim ◽  
...  

Abstract. The total solar eclipse on 9 March 2016 was a rare phenomenon that could be observed in 12 provinces in Indonesia. The decline in solar radiation to the earth during a total solar eclipse affects the amount of electron content (TEC) in the ionosphere. The ionospheric dynamics during the eclipse above Indonesia have been studied using data from 40 GPS stations distributed throughout the archipelago. It was observed that TEC decrease occurred over Indonesia during the occurrence of the total eclipse. This TEC decrease did not instigate ionoshperic scintillation. Moreover, the relationship between eclipse magnitude and TEC decrease throughout three GPS stations was analysed using PRN 24 and PRN 12 codes. Data analysis from each station reveals that the time required by the TEC to achieve maximum reduction since the initial contact of the eclipse is faster than the recovery time. The maximum TEC reduction came about several minutes after the maximum obscuration indicating that the recombination process was still ongoing even though the peak of the eclipse had happened. The magnitude of this decline is positively correlated with the geographical location of the stations and the relative satellite trajectory with respect to the total solar eclipse trajectory. The amount of TEC reduction is proportional to the magnitude of the eclipse which is directly related to the photoionization process. Because Indonesia is located in a low latitude magnetic equator region, the dynamics of the ionosphere above it is more complex due to the fountain effect. During the solar eclipse, the fountain effect declines disturbing the plasma transport from the magnetic equator to low latitude regions.


2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pin-Hsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

AbstractThis study investigates the medium-scale traveling ionospheric disturbances (MSTIDs) statistically at the low-latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5° N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800–2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200–2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100–140 during 0000–0300 LT. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high-resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2007 ◽  
Vol 7 (18) ◽  
pp. 4943-4951 ◽  
Author(s):  
C. S. Zerefos ◽  
E. Gerasopoulos ◽  
I. Tsagouri ◽  
B. E. Psiloglou ◽  
A. Belehaki ◽  
...  

Abstract. This study aims at providing experimental evidence, to support the hypothesis according to which the movement of the moon's shadow sweeping the ozone layer at supersonic speed, during a solar eclipse, creates gravity waves in the atmosphere. An experiment was conducted to study eclipse induced thermal fluctuations in the ozone layer (via measurements of total ozone column, ozone photolysis rates and UV irradiance), the ionosphere (Ionosonde Total Electron Content – ITEC, peak electron density height – hmF2), and the troposphere (temperature, relative humidity), before, during and after the total solar eclipse of 29 March 2006. We found the existence of eclipse induced dominant oscillations in the parameters related to the ozone layer and the ionosphere, with periods ranging between 30–40 min. Cross-spectrum analyses resulted to statistically significant square coherences between the observed oscillations, strengthening thermal stratospheric ozone forcing as the main mechanism for GWs. Additional support for a source below the ionosphere was provided by the amplitude of the oscillations in the ionospheric electron density, which increased upwards from 160 to 220 km height. Even though similar oscillations were shown in surface temperature and relative humidity data, no clear evidence for tropospheric influence could be derived from this study, due to the modest amplitude of these waves and the manifold rationale inside the boundary layer.


2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


Author(s):  
Adil Hussain ◽  
Munawar Shah

The international reference ionosphere (IRI) models have been widely used for correcting the ionospheric scintillations at different altitude levels. An evaluation on the performance of VTEC correction from IRI models (version 2007, 2012 and 2016) over Sukkur, Pakistan (27.71º N, 68.85º E) is presented in this work. Total Electron Content (TEC) from IRI models and GPS in 2019 over Sukkur region are compared. The main aim of this comparative analysis is to improve the VTEC in low latitude Sukkur, Pakistan. Moreover, this study will also help us to identify the credible IRI model for the correction of Global Positioning System (GPS) signal in low latitude region in future. The development of more accurate TEC finds useful applications in enhancing the extent to which ionospheric influences on radio signals are corrected. VTEC from GPS and IRI models are collected between May 1, 2019 and May 3, 2019. Additionally, Dst and Kp data are also compared in this work to estimate the geomagnetic storm variations. This study shows a good correlation of 0.83 between VTEC of GPS and IRI 2016. Furthermore, a correlation of 0.82 and 0.78 is also recorded for IRI 2012 and IRI 2007 respectively, with VTEC of GPS. The IRI TEC predictions and GPS-TEC measurements for the studied days reveal the potential of IRI model as a good candidate over Pakistan.


2006 ◽  
Vol 24 (8) ◽  
pp. 2191-2200 ◽  
Author(s):  
F. Bertoni ◽  
Y. Sahai ◽  
W. L. C. Lima ◽  
P. R. Fagundes ◽  
V. G. Pillat ◽  
...  

Abstract. In this work, the F-region critical frequency (foF2) and peak height (hmF2) measured by digital ionosondes at two Brazilian low-latitude stations, namely Palmas (10.17° S, 48.20° W, dip –10.80°) and São José dos Campos (23.20° S, 45.86° W, dip –38.41°), are compared with the IRI-2001 model predictions. The comparison at the latter station shows quite a reasonable agreement for both parameters. The former station exhibits a better agreement for hmF2 than for foF2. In general, the model generates good results, although some improvements are still necessary to implement in order to obtain better simulations for equatorial ionospheric regions.


Sign in / Sign up

Export Citation Format

Share Document