scholarly journals Exploration of dual supply voltage logic synthesis in state-of-the-art ASIC design flows

2003 ◽  
Vol 1 ◽  
pp. 185-189
Author(s):  
T. Mahnke ◽  
W. Stechele ◽  
M. Embacher ◽  
W. Hoeld

Abstract. Dual supply voltage scaling (DSVS) for logiclevel power optimization at the has increasingly attracted attention over the last few years. However, mainly due to the fact that the most widely used design tools do not support this new technique, it has still not become an integral part of real-world design flows. In this paper, a novel logic synthesis methodology that enables DSVS while relying entirely on standard tools is presented. The key to this methodology is a suitably modeled dual supply voltage (DSV) standard cell library. A basic evaluation of the methodology has been carried out on a number of MCNC benchmark circuits. In all these experiments, the results of state-of-the-art powerdriven single supply voltage (SSV) logic synthesis have been used as references in order to determine the true additional benefit of DSVS. Compared with the results of SSV power optimization, additional power reductions of 10% on average have been achieved. The results prove the feasibility of the new approach and reveal its greater efficiency in comparison with a well-known dedicated DSVS algorithm. Finally, the methodology has been applied to an embedded microcontroller core in order to further explore the potentials and limitations of DSVS in an existing industrial design environment.

2020 ◽  
pp. 1-16
Author(s):  
Meriem Khelifa ◽  
Dalila Boughaci ◽  
Esma Aïmeur

The Traveling Tournament Problem (TTP) is concerned with finding a double round-robin tournament schedule that minimizes the total distances traveled by the teams. It has attracted significant interest recently since a favorable TTP schedule can result in significant savings for the league. This paper proposes an original evolutionary algorithm for TTP. We first propose a quick and effective constructive algorithm to construct a Double Round Robin Tournament (DRRT) schedule with low travel cost. We then describe an enhanced genetic algorithm with a new crossover operator to improve the travel cost of the generated schedules. A new heuristic for ordering efficiently the scheduled rounds is also proposed. The latter leads to significant enhancement in the quality of the schedules. The overall method is evaluated on publicly available standard benchmarks and compared with other techniques for TTP and UTTP (Unconstrained Traveling Tournament Problem). The computational experiment shows that the proposed approach could build very good solutions comparable to other state-of-the-art approaches or better than the current best solutions on UTTP. Further, our method provides new valuable solutions to some unsolved UTTP instances and outperforms prior methods for all US National League (NL) instances.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1156
Author(s):  
Lorenzo Benvenuti ◽  
Alessandro Catania ◽  
Giuseppe Manfredini ◽  
Andrea Ria ◽  
Massimo Piotto ◽  
...  

The design of ultra-low voltage analog CMOS integrated circuits requires ad hoc solutions to counteract the severe limitations introduced by the reduced voltage headroom. A popular approach is represented by inverter-based topologies, which however may suffer from reduced finite DC gain, thus limiting the accuracy and the resolutions of pivotal circuits like analog-to-digital converters. In this work, we discuss the effects of finite DC gain on ultra-low voltage ΔΣ modulators, focusing on the converter gain error. We propose an ultra-low voltage, ultra-low power, inverter-based ΔΣ modulator with reduced finite-DC-gain sensitivity. The modulator employs a two-stage, high DC-gain, switched-capacitor integrator that applies a correlated double sampling technique for offset cancellation and flicker noise reduction; it also makes use of an amplifier that implements a novel common-mode stabilization loop. The modulator was designed with the UMC 0.18 μm CMOS process to operate with a supply voltage of 0.3 V. It was validated by means of electrical simulations using the CadenceTM design environment. The achieved SNDR was 73 dB, with a bandwidth of 640 Hz, and a clock frequency of 164 kHz, consuming only 200.5 nW. It achieves a Schreier Figure of Merit of 168.1 dB. The proposed modulator is also able to work with lower supply voltages down to 0.15 V with the same resolution and a lower power consumption despite of a lower bandwidth. These characteristics make this design very appealing in sensor interfaces powered by energy harvesting sources.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shushan Arakelyan ◽  
Sima Arasteh ◽  
Christophe Hauser ◽  
Erik Kline ◽  
Aram Galstyan

AbstractTackling binary program analysis problems has traditionally implied manually defining rules and heuristics, a tedious and time consuming task for human analysts. In order to improve automation and scalability, we propose an alternative direction based on distributed representations of binary programs with applicability to a number of downstream tasks. We introduce Bin2vec, a new approach leveraging Graph Convolutional Networks (GCN) along with computational program graphs in order to learn a high dimensional representation of binary executable programs. We demonstrate the versatility of this approach by using our representations to solve two semantically different binary analysis tasks – functional algorithm classification and vulnerability discovery. We compare the proposed approach to our own strong baseline as well as published results, and demonstrate improvement over state-of-the-art methods for both tasks. We evaluated Bin2vec on 49191 binaries for the functional algorithm classification task, and on 30 different CWE-IDs including at least 100 CVE entries each for the vulnerability discovery task. We set a new state-of-the-art result by reducing the classification error by 40% compared to the source-code based inst2vec approach, while working on binary code. For almost every vulnerability class in our dataset, our prediction accuracy is over 80% (and over 90% in multiple classes).


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 230 ◽  
Author(s):  
Slavisa Tomic ◽  
Marko Beko

This work addresses the problem of target localization in adverse non-line-of-sight (NLOS) environments by using received signal strength (RSS) and time of arrival (TOA) measurements. It is inspired by a recently published work in which authors discuss about a critical distance below and above which employing combined RSS-TOA measurements is inferior to employing RSS-only and TOA-only measurements, respectively. Here, we revise state-of-the-art estimators for the considered target localization problem and study their performance against their counterparts that employ each individual measurement exclusively. It is shown that the hybrid approach is not the best one by default. Thus, we propose a simple heuristic approach to choose the best measurement for each link, and we show that it can enhance the performance of an estimator. The new approach implicitly relies on the concept of the critical distance, but does not assume certain link parameters as given. Our simulations corroborate with findings available in the literature for line-of-sight (LOS) to a certain extent, but they indicate that more work is required for NLOS environments. Moreover, they show that the heuristic approach works well, matching or even improving the performance of the best fixed choice in all considered scenarios.


10.1109/4.999 ◽  
1988 ◽  
Vol 23 (2) ◽  
pp. 387-399 ◽  
Author(s):  
M.A. Beunder ◽  
J.P. Kernhof ◽  
B. Hoefflinger

2020 ◽  
Author(s):  
Esmaeil Nourani ◽  
Ehsaneddin Asgari ◽  
Alice C. McHardy ◽  
Mohammad R.K. Mofrad

AbstractWe introduce TripletProt, a new approach for protein representation learning based on the Siamese neural networks. We evaluate TripletProt comprehensively in protein functional annotation tasks including sub-cellular localization (14 categories) and gene ontology prediction (more than 2000 classes), which are both challenging multi-class multi-label classification machine learning problems. We compare the performance of TripletProt with the state-of-the-art approaches including recurrent language model-based approach (i.e., UniRep), as well as protein-protein interaction (PPI) network and sequence-based method (i.e., DeepGO). Our TripletProt showed an overall improvement of F1 score in the above mentioned comprehensive functional annotation tasks, solely relying on the PPI network. TripletProt and in general Siamese Network offer great potentials for the protein informatics tasks and can be widely applied to similar tasks.


2015 ◽  
Author(s):  
Rodrigo Goulart ◽  
Juliano De Carvalho ◽  
Vera De Lima

Word Sense Disambiguation (WSD) is an important task for Biomedicine text-mining. Supervised WSD methods have the best results but they are complex and their cost for testing is too high. This work presents an experiment on WSD using graph-based approaches (unsupervised methods). Three algorithms were tested and compared to the state of the art. Results indicate that similar performance could be reached with different levels of complexity, what may point to a new approach to this problem.


Sign in / Sign up

Export Citation Format

Share Document