scholarly journals 3D Printed and Photonically Cured Graphene UHF RFID Tags on Textile, Wood, and Cardboard Substrates

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
M. Akbari ◽  
H. He ◽  
J. Juuti ◽  
M. M. Tentzeris ◽  
J. Virkki ◽  
...  

This paper introduces 3D direct writing and microdispensing of graphene ultrahigh frequency (UHF) radio-frequency-identification (RFID) antennas on textile, wood, and cardboard substrates, subsequently cured either by conventional oven or photonically by pulsed Xenon flashes. Photonic-cured passive UHF RFID graphene tags on cardboard, wood, and textile substrates achieve read ranges of 5.4, 4.6, and 4 meters, respectively. These results are superior to those achieved by the oven-cured tags that featured read ranges of 4.8, 4.5, and 3.6 meters, respectively. This work presents the first integration of 3D printing and photonic curing of graphene antennas on low-cost versatile substrates.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4740
Author(s):  
Sergio Terranova ◽  
Filippo Costa ◽  
Giuliano Manara ◽  
Simone Genovesi

A new class of Radio Frequency IDentification (RFID) tags, namely the three-dimensional (3D)-printed chipless RFID one, is proposed, and their performance is assessed. These tags can be realized by low-cost materials, inexpensive manufacturing processes and can be mounted on metallic surfaces. The tag consists of a solid dielectric cylinder, which externally appears as homogeneous. However, the information is hidden in the inner structure of the object, where voids are created to encrypt information in the object. The proposed chipless tag represents a promising solution for anti-counterfeiting or security applications, since it avoids an unwanted eavesdropping during the reading process or information retrieval from a visual inspection that may affect other chipless systems. The adopted data-encoding algorithm does not rely on On–Off or amplitude schemes that are commonly adopted in the chipless RFID implementations but it is based on the maximization of available states or the maximization of non-overlapping regions of uncertainty. The performance of such class of chipless RFID tags are finally assessed by measurements on real prototypes.


2013 ◽  
Vol 5 (5) ◽  
pp. 645-651 ◽  
Author(s):  
Y. Duroc ◽  
G. Andia Vera ◽  
J. P. Garcia Martin

This paper presents a new approach for improving the localization of passive ultra high frequency radio frequency identification (RFID) tags in line-of-sight channels using a received signal strength indicator (RSSI) technique. In practice, the complex propagation in the indoor channels and also the variability of some parameters of the RFID equipment itself introduces significant amount of errors when the operation of localization carries out the RSSI technique. Indeed, as the calculation is based on a trilateration, the incomplete knowledge of the propagation and some parameters of RFID tags leads to estimate distances which are wrong, and therefore the localization cannot be correct. In order to overcome this drawback, the proposed method takes into account the presence of unknown parameters relying on a dichotomous algorithm which includes probabilistic parameters. The presented simulation results are in good agreement with the expected theoretical results. Experimental results show that the proposed method strongly increases the accuracy of the estimated position of tags. Compared to other approaches based on the improvement of the RSSI technique, this method does not require too much complexity in terms of materials (no need for specific architecture or reference tags) and processing (fast and simple algorithm).


Author(s):  
Zhou Yi ◽  
Zi Qin Phua ◽  
Vitor N. B. Rangel ◽  
Johné M. Parker

Recently, the Internet of things (IoT) has emerged as a promising solution for several industrial applications. One of the key components in IoT is passive radio frequency identification (RFID) tags which do not require a power source for operations. Specifically, ultra-high frequency (UHF) tags are studied in this paper. However, due to factors such as tag-to-tag interference and inaccurate localization, RFID tags that are closely spaced together are difficult to detect and program accurately with unique identifiers. This paper investigates several factors that affect the ability to encode a specific tag with unique information in the presence of other tags, such as reader power level, tag-to-antenna distance, tag-to-tag distance and tag orientation. ANOVA results report reader power level and tag spacing, along with effect interactions power level*tag space and tag space*tag orientation to be significant at the levels investigated. Results further suggest a preliminary minimum tag-to-tag spacing which enables the maximum number of tagged items to be uniquely encoded without interference. This finding can significantly speed up the process of field programming in item-level tagging.


Author(s):  
Yongtao Ma ◽  
Zheng Gao ◽  
Yang Zhao

Radio frequency identification (RFID) is a technique using two-way radio transmission pattern to transmit information through the device of interrogator (also called reader) and tag. It is considered to be one of the most popular techniques for internet of things (IOT). In this chapter, the authors study indoor localization techniques based on passive UHF RFID, which works around the frequency of 900MHz. Passive RFID has the advantage of reasonable reading distance, non-contact, easy deployment, and low cost. The tags do not need battery and it can harvest power through wireless charging. Due to those advantages, passive UHF RFID positioning has always been an active research area in the past few decades. This chapter discusses the key techniques in passive UHF RFID positioning, which include range-based, range-free, tag-based (device-based), tag-free (device-free), and improved positioning methods. All the techniques studied are suited to be implemented in RFID systems, each of which can be accommodated to a specific application scenario.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Han He ◽  
Mitra Akbari ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen ◽  
Johanna Virkki

We present the possibilities of 3D direct-write dispensing in the fabrication of passive UHF RFID graphene tags on a textile substrate. In our method, the graphene tag antenna is deposited directly on top of the IC strap, in order to simplify the manufacturing process by removing one step, that is, the IC attachment with conductive glue. Our wireless measurement results confirm that graphene RFID tags with printed antenna-IC interconnections achieve peak read ranges of 5.2 meters, which makes them comparable to graphene tags with epoxy-glued ICs. After keeping the tags in high humidity, the read ranges of the tags with epoxy-glued and printed antenna-IC interconnections decrease 0.8 meters and 0.5 meters, respectively. However, after drying, the performance of both types of tags returns back to normal.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin You ◽  
Bo Yang ◽  
Xuan Wen ◽  
Liangyu Qu

A new ultrahigh frequency radio frequency identification (UHF RFID) reader’s front-end circuit which is based on zero-IF, single antenna structure and composed of discrete components has been designed. The proposed design brings a significant improvement of the reading performance by adopting a carrier leakage suppression (CLS) circuit instead of a circulator which is utilized by most of the conventional RF front-end circuit. Experimental results show that the proposed design improves both the sensitivity and detection range compared to the conventional designs.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2696 ◽  
Author(s):  
Laura Arjona ◽  
Hugo Landaluce ◽  
Asier Perallos ◽  
Enrique Onieva

The current growing demand for low-cost edge devices to bridge the physical–digital divide has triggered the growing scope of Radio Frequency Identification (RFID) technology research. Besides object identification, researchers have also examined the possibility of using RFID tags for low-power wireless sensing, localisation and activity inference. This paper focuses on passive UHF RFID sensing. An RFID system consists of a reader and various numbers of tags, which can incorporate different kinds of sensors. These sensor tags require fast anti-collision protocols to minimise the number of collisions with the other tags sharing the reader’s interrogation zone. Therefore, RFID application developers must be mindful of anti-collision protocols. Dynamic Frame Slotted Aloha (DFSA) anti-collision protocols have been used extensively in the literature because EPCglobal Class 1 Generation 2 (EPC C1G2), which is the current communication protocol standard in RFID, employs this strategy. Protocols under this category are distinguished by their policy for updating the transmission frame size. This paper analyses the frame size update policy of DFSA strategies to survey and classify the main state-of-the-art of DFSA protocols according to their policy. Consequently, this paper proposes a novel policy to lower the time to read one sensor data packet compared to existing strategies. Next, the novel anti-collision protocol Fuzzy Frame Slotted Aloha (FFSA) is presented, which applies this novel DFSA policy. The results of our simulation confirm that FFSA significantly decreases the sensor tag read time for a wide range of tag populations when compared to earlier DFSA protocols thanks to the proposed frame size update policy.


2012 ◽  
Vol 1402 ◽  
Author(s):  
Hong Wang ◽  
Zhuoyu Ji ◽  
Liwei Shang ◽  
Yingping Chen ◽  
Congyan Lu ◽  
...  

ABSTRACTIn this paper, low-cost rectifier based on an organic diode for use in organic radio frequency identification (RFID) tags is proposed. Pentacene is the electroactive layer, with 7,7,8,8-tetracyanoquinodimethane (TCNQ) modified low-cost copper (Cu) and aluminum (Al) as the Ohmic and Schottky contacts, respectively. Hole injection barrier between Cu and pentacene can be decreased by forming the self-assembled layers of Cu-TCNQ. The diode shows a high rectification ratio of approximately 2×106 at 5V and the organic diode based rectifier circuit generated a dc output voltage of approximately 2V at 13.56MHz, using an input ac signal with zero-to-peak voltage amplitude of 5 V. The results indicate that chemical modification of the low-cost electrodes could be an efficient way toward low-cost high performance organic electronics devices.


2016 ◽  
Vol 4 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Riccardo Colella ◽  
Luca Catarinucci ◽  
Luciano Tarricone

Radio-frequency identification (RFID) technology is a consolidated example of wireless power transfer system in which passive electromagnetic labels called tags are able to harvest electromagnetic energy from the reader antennas, power-up their internal circuitry and provide the automatic identification of objects. Being fully passive, the performance of RFID tags is strongly dependent on the context, so that the selection of the most suitable tag for the specific application becomes a key point. In this work, a cost-effective but accurate system for the over-the-air electromagnetic characterization of assembled UHF RFID tags is firstly presented and then validated through comparison with a consolidated and diffused measurement systems. Moreover, challenging use-cases demonstrating the usefulness of the proposed systems in analyzing the electromagnetic performance of label-type tags also when applied on different material or embedded into concrete structures have been carried out.


Sign in / Sign up

Export Citation Format

Share Document