scholarly journals Analysis and exploitation of harmonics in wireless power transfer (H-WPT): passive UHF RFID case

2014 ◽  
Vol 1 (2) ◽  
pp. 65-74 ◽  
Author(s):  
Gianfranco Andia Vera ◽  
Yvan Duroc ◽  
Smail Tedjini

This paper discusses novel methodologies for the characterization of harmonic signals generated by wireless powered devices, i.e. passive ultra-high frequency (UHF) radio frequency identification (RFID) tags, due to the wireless power transferred from reader to tag. Theoretical aspects, as well as measurements to characterize these non-linear phenomena are exposed. Particular care is taken to explain the analysis methodology and setup for two kinds of characterization measurements: radiated and conducted. The existence of harmonic signals carrying information is exploited in an advanced application example. A dual-band RFID tag is designed to increase the backscattered harmonic level in the tag-to-reader link. Measurement of this dual band tag demonstrates the exploitation of the hitherto neglected harmonic power; it also opens the door to more advanced applications exploiting the harmonic-link communication.

2016 ◽  
Vol 4 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Riccardo Colella ◽  
Luca Catarinucci ◽  
Luciano Tarricone

Radio-frequency identification (RFID) technology is a consolidated example of wireless power transfer system in which passive electromagnetic labels called tags are able to harvest electromagnetic energy from the reader antennas, power-up their internal circuitry and provide the automatic identification of objects. Being fully passive, the performance of RFID tags is strongly dependent on the context, so that the selection of the most suitable tag for the specific application becomes a key point. In this work, a cost-effective but accurate system for the over-the-air electromagnetic characterization of assembled UHF RFID tags is firstly presented and then validated through comparison with a consolidated and diffused measurement systems. Moreover, challenging use-cases demonstrating the usefulness of the proposed systems in analyzing the electromagnetic performance of label-type tags also when applied on different material or embedded into concrete structures have been carried out.


The Radio Frequency Identification (RFID) technology has been increasingly used for various application such as tracking of products, smart cards, identification, item management, security etc. In this paper, the performance parameter of the passive UHF RFID tag antenna has been studied for four different substrate materials viz., FR4 epoxy, PET, Rogers 4350, Taconic TLY materials. A simple meandered dipole antenna has been designed using a T-match stub for impedance matching of the tag antenna with the attached RFID chip. These different substrates are then designed separately, for the same antenna geometry. The effect of using these substrates on RFID tag antenna parameters such as reflection coefficient, antenna gain, VWSR, radiation pattern, impedance, ease of optimization level, read range, and radiation efficiency are then observed.


2014 ◽  
Vol 10 (2) ◽  
pp. 99 ◽  
Author(s):  
Luigi Patrono

Radio Frequency Identification (RFID) and Wireless Sensor Networks (WSNs) have received an ever-increasing attention in recent years, mainly because they represent two of the most important technologies enabling the Internet of Things vision. Although designed originally with different objectives, WSN and RFID represent two complementary technologies whose integration might increase their functionalities and extend their range of applications. However, important technological issues must still be solved in order to fully exploit the potentialities offered by such integration. In this work, an innovative RFID-WSN integration approach is presented and validated. It relies on the interconnection of a new-generation, long-range, EPCglobal Class-1 Generation-2 Ultra-High-Frequency (UHF) RFID tag with a commercial WSN node via the I2C interface. Experimental results have demonstrated the effectiveness of the proposed approach compared to existing solution in the literature. Interesting application scenarios enabled by the proposed RFID-WSN integration approach are briefly summarized at the end of the paper.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Toni Björninen ◽  
Sari Merilampi ◽  
Leena Ukkonen ◽  
Lauri Sydänheimo ◽  
Pekka Ruuskanen

In passive Radio Frequency Identification (RFID), transponders or tags are used to label objects to be identified. In this study passive tag antennas were produced using etching, screen-printing, and gravure printing methods. The threshold and backscattered signal strengths of the tags were measured to determine the effect of different manufacturing methods on the tags' performance. Conductivity, skin depth, thickness, and the quality of the conducting layer have a major effect on tag performance. Each manufacturing method sets its own boundary conditions on the processibility of the high quality conduction layer and such conditions need to be considered in tag design. Tag design also affects the manufacturing parameters used in the different techniques. The results of the study show that each of the studied fabrication methods can be used to manufacture reliable RFID tags.


Author(s):  
N. Vidal ◽  
A. Salas-Barenys ◽  
A. Garcia ◽  
J. Romeu ◽  
G. Gonzalez ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5460 ◽  
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 × 60 × 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).


2020 ◽  
pp. 004051752094890
Author(s):  
Yong Zhang ◽  
Jiyong Hu ◽  
Xiong Yan ◽  
Xudong Yang

This paper describes the design of a novel ultrahigh frequency radio frequency identification (UHF RFID) tag thread that mainly consisted of the common yarn and the normal mode helix dipole antenna. The linear dipole antenna for the UHF RFID tag thread was too long to miniaturize the tag. In order to maximize the read performance and miniaturize the size of the tag, the basic antenna structure parameters, such as the helical pitch and single arm length, were optimized by analyzing the radiation parameter S11 of the normal mode helix dipole antenna based on simulation experiments. The simulation experiments started with optimizing the single arm length to obtain the minimum of the S11 parameter at resonant frequency, then the helical pitch was further optimized to limit the resonant frequency to the UHF range. The simulation results showed the resonant frequency rises with an increase of helical pitch and declines with an increase of single arm length. Furthermore, a series of UHF RFID tag threads with good performance from the simulation cases were prepared, and the performance of the optimized tag was validated. Generally, the UHF RFID tag thread with optimized helix dipole antenna could reduce the axial length of the tag by 57% and improve the reading range by 500%, and its performance was greatly superior to that of the UHF RFID tag thread with the classical linear dipole antenna.


2013 ◽  
Vol 816-817 ◽  
pp. 957-961
Author(s):  
Feng Ying Huang ◽  
Jun Wang ◽  
Yu Sen Xu ◽  
Ji Wei Huang

This paper proposes a new synchronized serial-parallel CRC(Cycle Redundancy Check) with PIE(Pulse Interval Encoding) decoding circuit for the UHF(Ultra-High Frequency) RFID(Radio Frequency Identification), which is based on the ISO/IEC 18000-6C standards protocol. The parallel algorithm of CRC circuit is derived, and the serial or parallel CRC circuit on RFID tag chip is evaluated in this paper. Finally, the designed circuit is simulated and analyzed on the FPGA platform. Simulation results show that the proposed circuit meets the communication requirement of the protocol and addresses the problem of low data processing rate of conventional serial CRC circuit, as well as implements 1 to 8 degree of parallelism of the parallel CRC circuit for UHF RFID.


2013 ◽  
Vol 427-429 ◽  
pp. 1289-1292
Author(s):  
Yan Zhong Yu ◽  
Hua Nan Yang ◽  
Zhong Yi Huang

With the rapid development of RFID (radio frequency identification) application, the design requirements of RFID tag antenna are also increasing. A design of dual-frequency or multi-frequency tag antenna has become fashionable. In the present paper, we design a dual-band RFID tag antenna, which consists of a bent microstrip patch and rectangular microstrip patch. The designed antenna is analyzed and optimized by HFSS13. Simulation results indicate that the tag antenna has the characteristics of double band, high gain, and good radiation pattern.


Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 547-557
Author(s):  
Sofia Benouakta ◽  
Florin Doru Hutu ◽  
Yvan Duroc

In the context of wearable technology, several techniques have been used for the fabrication of radio frequency identification (RFID) tags such as 3D printing, inkjet printing, and even embroidery. In contrast to these methods where the tag is attached to the object by using sewing or simple sticking, the E-Thread® technology is a novel assembling method allowing for the integration of the RFID tag into a textile yarn and thus makes it embeddable into the object at the fabrication stage. The current E-Thread® yarn uses a RFID tag in which the antenna is a straight half-wave dipole that makes the solution vulnerable to mechanical strains (i.e., elongation). In this paper, we propose an alternative to the current RFID yarn solution with the use of an antenna having a helical geometry that answers to the mechanical issues and keeps quite similar electrical and radiative properties with respect to the present solution. The RFID helical tag was designed and simulated taking into consideration the constraints of the manufacturing process. The helical RFID tag was then fabricated using the E-Thread® technology and experimental characterization showed that the obtained structure exhibited good performance with 10.6 m of read range in the ultra high frequency (UHF) RFID band and 10% of tolerance in terms of elongation.


Sign in / Sign up

Export Citation Format

Share Document