scholarly journals Influences of weather phenomena on automotive laser radar systems

2011 ◽  
Vol 9 ◽  
pp. 49-60 ◽  
Author(s):  
R. H. Rasshofer ◽  
M. Spies ◽  
H. Spies

Abstract. Laser radar (lidar) sensors provide outstanding angular resolution along with highly accurate range measurements and thus they were proposed as a part of a high performance perception system for advanced driver assistant functions. Based on optical signal transmission and reception, laser radar systems are influenced by weather phenomena. This work provides an overview on the different physical principles responsible for laser radar signal disturbance and theoretical investigations for estimation of their influence. Finally, the transmission models are applied for signal generation in a newly developed laser radar target simulator providing – to our knowledge – worldwide first HIL test capability for automotive laser radar systems.

2019 ◽  
Vol 7 (40) ◽  
pp. 12704-12708 ◽  
Author(s):  
Shaozuo Huang ◽  
Huan Chen ◽  
Tao He ◽  
Changjian Zhang ◽  
Chengyun Zhang ◽  
...  

Upconversion luminescence-based waveguides can achieve optical signal transmission and visible light emission with near-infrared light excitation and their quality is highly dependent on the coupling efficiency between the light and waveguide.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1311
Author(s):  
Giovanni Andrea Casula ◽  
Giuseppe Mazzarella ◽  
Giorgio Montisci ◽  
Giacomo Muntoni

Planar waveguide slot arrays (WSAs) have been used since 1940 and are currently used as performing antennas for high frequencies, especially in applications such as communication and RADAR systems. We present in this work a review of the most typical waveguide slot array configurations proposed in the literature, describing their main limitations and drawbacks along with possible effective countermeasures. Our attention has been focused mainly on the improved available design techniques to obtain high performance WSAs. In particular, the addressed topics have been reported in the following. Partially filled WSAs, or WSAs covered with single or multilayer dielectric slabs, are discussed. The most prominent second-order effects in the planar array feeding network are introduced and accurately modeled. The attention is focused on the T-junction feeding the array, on the effect of interaction between each slot coupler of the feeding network and the radiating slots nearest to this coupler, and on the waveguide bends. All these effects can critically increase the first sidelobes if compared to the ideal case, causing a sensible worsening in the performance of the array.


2011 ◽  
Vol 383-390 ◽  
pp. 471-475
Author(s):  
Yong Bin Hong ◽  
Cheng Fa Xu ◽  
Mei Guo Gao ◽  
Li Zhi Zhao

A radar signal processing system characterizing high instantaneous dynamic range and low system latency is designed based on a specifically developed signal processing platform. Instantaneous dynamic range loss is a critical problem when digital signal processing is performed on fixed-point FPGAs. In this paper, the problem is well resolved by increasing the wordlength according to signal-to-noise ratio (SNR) gain of the algorithms through the data path. The distinctive software structure featuring parallel pipelined processing and “data flow drive” reduces the system latency to one coherent processing interval (CPI), which significantly improves the maximum tracking angular velocity of the monopulse tracking radar. Additionally, some important electronic counter-countermeasures (ECCM) are incorporated into this signal processing system.


2014 ◽  
Vol 556-562 ◽  
pp. 1618-1621
Author(s):  
Jia Liang Fan ◽  
Qiang Yang

Most radar systems based on the structure that contains many DSP chips. The system structure is always complex, and it is difficult to update. Nowadays, multi-core processor develops very fast. Compared with DSP chips, multi-core processor has better performance in signal processing field. In this paper, we present a signal processing architecture which based on multi-core processor. Pulse compression algorithms and PCI-E bus are discussed as two important technologies. Adaptive beamforming test results show that multi-core processor is able to achieve radar signal processing.


Nanophotonics ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 827-835 ◽  
Author(s):  
Hao Jia ◽  
Ting Zhou ◽  
Yunchou Zhao ◽  
Yuhao Xia ◽  
Jincheng Dai ◽  
...  

AbstractPhotonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.


2019 ◽  
Vol 434 ◽  
pp. 36-43 ◽  
Author(s):  
Tong Wu ◽  
Xiaoling Ji ◽  
Hao Zhang ◽  
Xiaoqing Li ◽  
Li Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document