scholarly journals Possible impacts of climate change on fog in the Arctic and subpolar North Atlantic

Author(s):  
Richard E. Danielson ◽  
Minghong Zhang ◽  
William A. Perrie

Abstract. A conventional parameterization of midlatitude warm fog occurrence, based on in situ observations, is employed to estimate marine surface visibility in the Arctic and North Atlantic from three datasets: an ensemble member of the Hadley Earth System (HadGEM2) model and a nested regional WRF simulation that follow historical and future emissions scenarios for 1979–2100, and the ERA-Interim reanalysis for 1979–2004. Over large scales (of an entire year and region), all three gridded datasets agree well in terms of variables like surface air temperature, whose systematic differences seem small by comparison with its predicted change over the course of this century. On the other hand, systematic differences are more apparent in large-scale estimates of relative humidity and visibility. Large differences are attributed to a sensitivity to representation bias that is inherent in the formulation of each individual model and analysis. Two simple linear calibrations are examined, both of which assume that an in situ based parameterization is broadly consistent with the use of marine (ICOADS) observations of air and dew point temperature as an error-free reference. A single-step calibration is considered that takes the mean and variance of ICOADS frequency distributions as a reference. A two-step calibration is also performed in which ICOADS collocations are taken as a reference for the ERA reanalysis, which in turn is taken as a large-scale reference for the 1979–2004 HadGEM2 and WRF simulations. Both linear calibrations are applied (locally in time and space to air and dew point temperature) to the future climate scenarios of HadGEM2 and WRF. Although ICOADS observations are not error-free and parameterized visibility estimates are unlikely to capture much more than half the variance found in observations, attempts are made to present consistent regional changes in the frequency of high relative humidity, as a proxy for warm fog occurrence. The large-scale decrease in visibility over the 21st century is in the range of 8 %–12 % in the Arctic and 0 %–5 % in the North Atlantic.

2012 ◽  
Vol 110 (3) ◽  
pp. 385-393 ◽  
Author(s):  
P. Hosseinzadeh Talaee ◽  
A. A. Sabziparvar ◽  
Hossein Tabari

OALib ◽  
2021 ◽  
Vol 08 (12) ◽  
pp. 1-13
Author(s):  
Enoch O. Elemo ◽  
Efua A. Ogobor ◽  
Benjamin G. Ayantunji ◽  
Otonye E. Mangete ◽  
George A. Alagbe ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 460-476
Author(s):  
Rodrigo Victor Moreira ◽  
Jefferson Luiz Gomes Correa ◽  
Ednilton Tavares de Andrade ◽  
Roney Alves da Rocha

The mathematical modelling is fundamental for the understanding of the related processes the drying, that influences the quality of the coffee drink. The objective of this study was to evaluate the influence of different relative humidity of the drying air after partial drying on drying kinetics of peeled coffees. Coffee fruits were harvested in the cherry stage and processed by wet, resulting in the portion of peeled coffee. Eleven treatments of drying were accomplished, being nine results of the combination of three dry bulb temperatures and three dew point temperatures, more two treatments without the control of the dew point temperatures. The control of the relative humidity by the dew point temperature was made after the grains reached the partial drying. Among the studied models, those of Diffusion Approximation and Modified Midilli were the most adequate for describing the drying process of the first and second part of drying respectively. The effective diffusivity coefficient of water in coffee grains ranged from 0.81 x 10-11 to 1.84 x 10-11 m² .s-1 during the first part of the drying and ranged from 1.49 x 10-11 to 3.29 x 10-11 m² .s-1 during the second part of the drying, increasing significantly with the reduction of the dew point temperature and increase of the dry bulb temperature.


1941 ◽  
Vol 8 (1) ◽  
pp. A14-A16
Author(s):  
R. C. Binder

Abstract A discussion is given of the use of a total pressure-temperature diagram provided with reversible adiabatic and specific-humidity lines for mixtures of air and water vapor. The graphical relation between dew-point temperature, dry-bulb temperature, and specific humidity is given directly for any total pressure on this chart. From this relation the vapor pressure and relative humidity can be easily calculated. Certain chart lines give a close approximation to the wet-bulb temperature for a limited range. This pressure-temperature chart should be convenient and useful for a wide variety of problems which involve these fundamental thermodynamic properties.


1939 ◽  
Vol 17d (2) ◽  
pp. 35-38 ◽  
Author(s):  
C. A. Winkler

An apparatus is described in which provision for slow cooling of a metal mirror by circulating over it liquid from a vessel in a thermoregulated bath, and the use of multiple thermocouple elements contained in the mirror, enable the dew-point temperature to be gradually approached and accurately determined. Precise measurements of relative humidity at low temperatures, where the moisture content of the air is small, are therefore possible. A precision of ± 0.5% relative humidity was readily attained at temperatures down to − 15 °C.


2012 ◽  
Vol 16 (1) ◽  
pp. 193-205 ◽  
Author(s):  
Nenad Milosevic ◽  
Nenad Stepanic ◽  
Marijana Babic

The paper presents a method used in the Vinca Institute of Nuclear Sciences for a reliable and traceable relative humidity calibration in the temperature range from 5?C to 45?C. Inside a controllable temperature and humidity environment, supplied by a mixed-flow humidity generator, measurements of hygrometers under calibration are compared with those of calibrated reference instruments. A traceability chain from temperature to reference relative humidity and next to the hygrometers under calibrations is provided by using a chilled-mirror dew-point temperature system and precise relative humidity probes. Corresponding calibration uncertainties are analyzed, particularly those associated to the temperature uniformity of controlled calibration environment. Two examples of relative humidity calibration with dew-point and relative humidity reference measurements in the range from 15 to 75% of RH and 5?C to 45?C are presented and discussed.


2021 ◽  
Vol 910 (1) ◽  
pp. 012010
Author(s):  
Wedyan G. Nassif ◽  
Sundus H. Jaber ◽  
Salwa S. Naif ◽  
Osama T. Al-Taai

Abstract Relative humidity can be inferred from the dew point values. When the air temperature and dew point temperatures are very close, the air has high relative humidity. The converse is true when there is a large difference between the air temperature and the dew point temperature, indicating the presence of low humidity air. To understand the expected changes in the climatic elements in the atmosphere, changes in temperature behavior, dew point, and relative humidity have been studied This study used data obtained from the European Center (ECMWF), which includes monthly and annual mean temperatures, dew, and relative humidity during the period (1988-2018) for selected stations in Iraq. The highest values of temperature and dew were recorded in July and August, and they were accompanied by a decrease in relative humidity. The highest value of relative humidity was recorded in December and January, accompanied by a decrease in temperature and dew, as we note through the results that there is an inverse relationship between relative humidity, temperature, and dew point Relative humidity changes when the temperature rises or falls, and the relative humidity may be higher in the morning when the temperature drops. The lowest amount of relative humidity during the day is when the temperature rises, the highest temperature value was recorded on 21July 2017 (12:00 PM) for Basra Station, while the highest relative value is humidity in Basra Governorate. Mosul station on January 21, 2014 (12:00 AM), and the reason is due to meteorological factors and the nature of the geographical area.


Sign in / Sign up

Export Citation Format

Share Document