scholarly journals Evaluation of radiosonde humidity sensors at low temperature using ultralow-temperature humidity chamber

2018 ◽  
Vol 15 ◽  
pp. 207-212 ◽  
Author(s):  
Byung Il Choi ◽  
Sang-Wook Lee ◽  
Sang-Bong Woo ◽  
Jong Chul Kim ◽  
Yong-Gyoo Kim ◽  
...  

Abstract. Accurate measurements of temperature and water vapor in the upper-air are of great interest in relation to weather prediction and climate change. Those measurements are mostly conducted using radiosondes equipped with a variety of sensors that are flown by a balloon up to lower stratosphere. Reference Upper Air Network (GRUAN) has identified water vapor pressure as one of the most important measurands and has set an accuracy requirement of 2 % in terms of the mixing ratio. In order to achieve the requirement, many errors in the humidity measurement such as a temperature dependency in sensing characteristics including measurement values and response time need to be corrected because humidity sensors of radiosondes pass through low-pressure (1 kPa) and low-temperature (−80 ∘C) environments in the upper-air. In this paper, the humidity sensing characteristics of Jinyang radiosonde sensors in relation to temperature dependencies were evaluated at low temperature using a newly developed ultralow-temperature humidity chamber. The sensitivity characteristic curve of the radiosonde sensors was evaluated down to −80 ∘C, and the calibration curves of the humidity sensor and the temperature sensor were obtained. The response time of humidity sensor slowly increased from 52 to 116 s at the temperature from 20 to −40 ∘C, respectively, and then rapidly increased to almost one hour at −80 ∘C. Those results will help to improve the reliability of the upper-air observation data.

Metrologia ◽  
2019 ◽  
Vol 56 (2) ◽  
pp. 025009 ◽  
Author(s):  
Sang-Wook Lee ◽  
Byung Il Choi ◽  
Sang-Bong Woo ◽  
Jong Chul Kim ◽  
Yong-Gyoo Kim

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 680 ◽  
Author(s):  
Shivaram Arunachalam ◽  
Ricardo Izquierdo ◽  
Frederic Nabki

A humidity sensor using suspended carbon nanotubes (CNTs) was fabricated using a low-temperature surface micromachining process. The CNTs were functionalized with carboxylic acid groups that facilitated the interaction of water vapor with the CNTs. The humidity sensor showed a response time of 12 s and a recovery time of 47 s, along with superior hysteresis and stable performance. The hysteresis curve area of the suspended structure is 3.6, a 3.2-fold reduction in comparison to the non-suspended structure. A comparative study between suspended and non-suspended devices highlights the advantages of using a suspended architecture.


2017 ◽  
Vol 10 (2) ◽  
pp. 537-548 ◽  
Author(s):  
Anton Leontiev ◽  
Yuval Reuveni

Abstract. Using GPS satellites signals, we can study different processes and coupling mechanisms that can help us understand the physical conditions in the lower atmosphere, which might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by ground stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into accurate integrated water vapor (IWV) observations using collocated pressure and temperature measurements on the ground. Here, we present for the first time the use of Israel's dense regional GPS network for extracting tropospheric zenith path delays combined with near-real-time Meteosat-10 water vapor (WV) and surface temperature pixel intensity values (7.3 and 10.8 µm channels, respectively) in order to assess whether it is possible to obtain absolute IWV (kg m−2) distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS zenith total delays (ZTD) and Meteosat-10 surface temperature data compared with available radiosonde IWV absolute values. The presented strategy can provide high temporal and special IWV resolution, which is needed as part of the accurate and comprehensive observation data integrated in modern data assimilation systems and is required for increasing the accuracy of regional numerical weather prediction systems forecast.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3858
Author(s):  
Shinya Kano ◽  
Harutaka Mekaru

Fast-response humidity sensors using nanomaterials are attractive and have been intensively studied. Among the various nanomaterials, nonporous inorganic nanoparticles are suitable for use in humidity sensitive films for sensors. Here, we focus on a nonporous inorganic nanoparticle film and investigate a humidity sensor using the film. Hysteresis error and a dynamic response to a change of humidity are fundamental specifications of humidity sensors. A humidity sensor using a 50 nm silica nanoparticle film shows a hysteresis error of 2% at 85% RH and a response/recovery time of 2.8/2.3 s in 30% RH to 70% RH. We also summarize response/recovery times and hysteresis errors of state-of-the-art humidity sensors. As compared to those of commercial sensors and porous nanoparticle-based sensors evaluated using saturated salt solutions, the fabricated sensor shows a comparative hysteresis error and shorter response time.


2013 ◽  
Vol 832 ◽  
pp. 466-470
Author(s):  
Nor Diyana Md Sin ◽  
M.H. Mamat ◽  
M. Rusop

The effects of polyvinyl alcohol (PVA) loading in ZnO/SnO2 sol-gel immersion method were investigated. The sensor characteristic of in ZnO/SnO2 nanocube was also been tested. The images of sample were carrying out by field emission scanning electron microscopy (FESEM) (JEOL JSM 6700F). The optical properties were characterized using photoluminescent (PL). The thin films were characterized using two point current-voltage (I-V) measurement (Keithley 2400) for electrical properties. The sensor was characterized using I-V measurement in a humidity chamber (ESPEC SH-261) and the chamber has been set at room temperature at 25°C relative humidity (RH %) is varied in the range of 40% to 90 %RH. The FESEM indicate the agglomeration and porous increase as the insertion of PVA into in ZnO/SnO2 nanocube (PVA-ZnO/SnO2 nanocube) compare with the as prepared in ZnO/SnO2 nanocube. PL measurement of PVA-ZnO/SnO2 nanocube describe blue shift behaviour after mixed the PVA. The sensitivity of the sensor of PVA-ZnO/SnO2 nanocube and ZnO/SnO2 nanocube were ratio of current 3.24 times and 12.7 times. While the response and recovery times of PVA-ZnO/SnO2 nanocube higher response and recovery times as compare with ZnO/SnO2 nanocube.


2017 ◽  
Vol 53 (32) ◽  
pp. 4465-4468 ◽  
Author(s):  
Yuan Gao ◽  
Pengtao Jing ◽  
Ning Yan ◽  
Michiel Hilbers ◽  
Hong Zhang ◽  
...  

Combined photoluminescence and impedance spectroscopy studies show that a europium-based metal–organic framework behaves as a highly effective and reliable humidity sensor, enabling dual-mode humidity detection.


2020 ◽  
pp. 100602
Author(s):  
Xinren Chen ◽  
Cuiping Wang ◽  
Yuheng Liu ◽  
Yansong Shen ◽  
Qijun Zheng ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


Sign in / Sign up

Export Citation Format

Share Document