scholarly journals Calculation of climatic reference values and its use for automatic outlier detection in meteorological datasets

2008 ◽  
Vol 2 (1) ◽  
pp. 1-4 ◽  
Author(s):  
B. Téllez ◽  
T. Cernocky ◽  
E. Terradellas

Abstract. The climatic reference values for monthly and annual average air temperature and total precipitation in Catalonia – northeast of Spain – are calculated using a combination of statistical methods and geostatistical techniques of interpolation. In order to estimate the uncertainty of the method, the initial dataset is split into two parts that are, respectively, used for estimation and validation. The resulting maps are then used in the automatic outlier detection in meteorological datasets.

2021 ◽  
pp. 87-99
Author(s):  
G. KH. ISMAIYLOV ◽  
◽  
N. V. MURASCHENKOVA ◽  
I. G. ISMAIYLOVA

The results of the analysis and assessment of changes in annual and seasonal characteristics of hydrometeorological processes in a private catchment area of the Kuibyshev hydroelectric complex of the Volga river are presented. To analyze the temporal dynamics of the variability of the annual and seasonal characteristics of the hydrometeorological processes in the considered territory of the river basin we used more than 100 years of observations of annual and seasonal fluctuations of lateral inflow, total atmospheric precipitation and air temperature regimes on the Volgariver. Relationship equations for annual and seasonal changes in hydrometeorological characteristics in time are obtained. It was found that long-term fluctuations of hydrometeorological processes (lateral inflow, total atmospheric precipitation and air temperature) are characterized by tendencies (trends). The analysis of these trends showed that the non-standard climatic situation, starting from the 70s of the last century, had a very significant impact on the distribution of annual and especially on the seasonal (low-water and winter) characteristics of hydrometeorological processes. It has been established that non-standard unidirectional changes are found in the fluctuations in the total atmospheric precipitation. If the winter total precipitation is characterized over the 100-year period in question by a continuously decreasing trend,the summer-autumn period is an increasing trend. This leads to the fact that long-term fluctuations in total precipitation during the period of low water are formed as a stationary process. At the same time, the total precipitation of the spring flood and inflowing to the Kuibyshev hydroelectric unit is characterized by a constantly increasing trend.


2021 ◽  
Vol 35 (1) ◽  
pp. 260-266 ◽  
Author(s):  
Antonio Garcia-Hermoso ◽  
Cristian Cofre-Bolados ◽  
Rodrigo Andrade-Schnettler ◽  
Rodrigo Ceballos-Ceballos ◽  
Omar Fernández-Vergara ◽  
...  

2010 ◽  
Vol 7 (3) ◽  
pp. 959-977 ◽  
Author(s):  
M. Ueyama ◽  
K. Ichii ◽  
R. Hirata ◽  
K. Takagi ◽  
J. Asanuma ◽  
...  

Abstract. Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.


2018 ◽  
Vol 11 (3) ◽  
pp. 77
Author(s):  
Washington Silva Alves ◽  
Zilda De Fátima Mariano

Resumo O objetivo desse trabalho consistiu em analisar a influência dos fatores geoecológicos e geourbanos no padrão da temperatura do ar máxima e mínima absoluta em Iporá-GO, por meio do método estatístico de correlação linear. Os fundamentos teóricos e metodológicos pautaram-se no sistema clima urbano de Monteiro (2003), com ênfase no subsistema termodinâmico. Os fatores geoecológicos (hipsometria, exposição de vertente, vegetação urbana e hidrografia) e geourbanos (densidade de construção e o uso do solo urbano), foram georreferenciado com auxílio dos softwares ArcGis 9.0, Spring 5.3 e Surfer 9.0. Os dados de temperatura do ar foram coletados entre outubro de 2012 e outubro de 2013, em intervalos de 30 minutos, com termohigrômetros (modelo HT-500) e estações meteorológicas automáticas distribuídos em seis pontos da área urbana e rural de Iporá. Posteriormente, os dados foram organizados em planilhas de cálculos para análise estatística. Os resultados demonstraram que os fatores geoecológicos e geourbanos citados foram decisivos na variação espacial da temperatura do ar máxima e mínima absoluta em Iporá.Palavras-chave: Climatologia, Cidade, Clima Urbano AbstractThe objective of this study is to analyze the influence of geoecological factors and geourbanos the standard maximum air temperature and absolute minimum in Iporá-GO, by means of statistical methods of correlation linear. The theoretical and methodological foundations guided in the urban climate system Monteiro (2003), with emphasis on thermodynamic subsystem. The geoecological factors (hipsometria, slop exposure, urban and Hydrography vegetation) and geourban (building density and the use of urban land), were georeferenced with the help of software ArcGIS 9.0, Sprint 5.3 and Surfer 9.0. The air temperature data were collected between October 2012 and October 2013, in 30-minute intervals, with hygrometer term (HT-500 model) and automatic weather stations distributed in six points of the urban and rural Iporá. Later, the data were organized into spreadsheets for statistical analysis. The results showed that geoecological mentioned factors and geourbanos were decisive in the spatial variation of the temperature of the air and maximum absolute minimum in Iporá.Keywords: Climatology, City, Urban Climate ResumenEl objetivo de este estudio fue analizar la influencia de los factores geoecológicos y geourbanos en el patrón de la temperatura máxima y mínima absoluta del aire en Iporá-GO, a través de lo método estadístico de correlación lineal. Los fundamentos teóricos y metodológicos se basan en el sistema de clima urbano de Monteiro (2003), con énfasis en el subsistema termodinámico. Los factores geoecológicos (hipsometría, hebras de exposición, hidrografía y vegetación urbana) y geourbanos (densidad de edificación y uso del suelo urbano) fueron georeferenciados con la ayuda del software ArcGIS 9.0, Spring 5.3 y Surfer 9.0. Los datos de temperatura del aire se recogieron entre octubre 2012 y octubre 2013, en intervalos de 30 minutos, con termohigrômetros (modelo HT-500) y estaciones meteorológicas automáticas distribuidas en seis puntos de las zonas urbanas y rurales. Posteriormente, los datos se organizaron en las hojas de cálculo para el análisis estadístico. Los resultados mostraron que los factores geoecológicos y geourbanos citados fueron decisivos en la variación espacial de la temperatura máxima y mínima absoluta del aire en Iporá.Palavras clave: Climatología, Ciudad, Clima Urbano 


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3543
Author(s):  
Nejc Bezak ◽  
Matjaž Mikoš

Compound extreme weather events can cause large economic damage and endanger human lives. Therefore, identification of changes in such compound event frequency and magnitude is important information that could be useful for decision makers and practitioners in water management and agriculture sector. This is especially the case for dry hazards that can be significantly influenced by the increasing air temperature and can have significant impact on water availability and consumption as well as on agricultural production. This study investigated changes in the compound occurrence of drought and extreme heat at the European scale using Uncertainties in Ensembles of Regional Reanalyses (UERRA) regional reanalysis data for the 1961–2018 period. The effective drought index (EDI) and the air temperature percentile threshold were used for the identification of the compound events at the catchment scale where entire Europe was divided into more than 4000 catchments. The results revealed multiple hotspots of compound drought and extreme heat events such as parts of Western Europe, Italy, Balkan Peninsula and Northern and Eastern Europe. At the continental scale, no uniform trend pattern could be detected. However, multiple areas with either positive or negative changes were identified. A positive change was characteristic for parts of Western Europe, Italy, Balkan Peninsula, etc. In these cases, the trend was mostly driven by the decreasing total precipitation trend and was not directly affected by the increasing air temperature trend. Areas with negative changes include parts of Northern and Eastern Europe and British Isles. In these cases, the detected trend was mostly driven by an increasing total precipitation trend. However, local drivers could be different.


Author(s):  
Clémentine Barreyre ◽  
Béatrice Laurent ◽  
Jean-Michel Loubes ◽  
Bertrand Cabon ◽  
Loïc Boussouf

2021 ◽  
Vol 2 ◽  
pp. 138-146
Author(s):  
V.K. Smakhtin ◽  

Assessment of changes in air temperature and precipitation in Transbaikalia/ Smakhtin V.K. // Hydrometeorological Research and Forecasting, 2021, no. 2 (380), pp. 138-146. The paper analyzes long-term fluctuations in average air temperature and annual total precipitation in Transbaikalia. Between 1951 and 2020, air temperature increased by 2.3 °C according to 40 weather stations. Warming is mainly manifested in the air temperature rise in February, March and April. From 1955 to 2017, the decrease in annual total precipitation was 56 mm in the Amur basin and 39 mm in the Yenisei basin. The trends are reliable at the 5% significance level. In the Lena basin, annual total precipitation during the mentioned period increased by 7 mm, the trend is not reliable at the 5% significance level. The high-water phase has been observed since 2017. Taking into account that two previous high-water phases lasted 16‒17 years, it may be supposed that a risk of precipitation above the normal will be kept in the next 13–14 years. Keywords: climate change, air temperature, precipitation, phases of water content, trendsRef. 81.


Author(s):  
Teodor RUSU ◽  
Mara L. SOPTEREAN ◽  
Paula I. MORARU ◽  
Ileana BOGDAN ◽  
Adrian I. POP ◽  
...  

The degree of soil degradation in Transylvanian Plain (TP) and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the multiannual average of the area. The year 2009 indicated an average of 503.84 mm in TP, considered in the lower limit of the area, followed by the year 2010 with an annual average of 607.84 mm, the year with the closest values to normal area precipitation values. The year 2011 is extremely dry, with an average of 376.56 mm. This situation is reflected in rainfall humidity values, recorded at a depth of 10 cm in the soil, where the area average is about 0.249%. Average air temperature during 2009-2011 is 10.75 0C, in the soil at 10 cm depth being 11.150C, respectively 11.28 0C at depth of 50 cm. Low amounts of precipitation, especially their poor distribution during crop vegetation, are aggravated by the deficit of hydrological resources for TP. The average air temperature is above multiannual average of the area, which significantly influenced the optimum time of sowing and amount of biologically active degrees of temperature during the vegetation period.


Author(s):  
Л. М. Пузік ◽  
З. Г. Образцова

На основі багаторічних досліджень вивчено впливсуми ефективних температур повітря та кілько-сті опадів за веґетаційний період на врожайністькабачка, а також на основі статистичної оброб-ки даних методами дисперсійного, кореляційного йреґресійного аналізів із використанням пакетівExcel і Statistica встановлено, що мінливість уро-жайності була низькою (5,39 %), але поступаласясумі температур (7,38 %) і кількості опадів(16,63 %). Статистичні параметри метеороло-гічних факторів і урожайності засвідчують, щоміж урожайністю й сумою опадів та сумоюефективних температур існує незначна оберненазалежність. Based on years of research studied the effect of the sumof effective air temperature and rainfall during the growingseason on yield and zucchini on the basis of statisticaldata processing methods disperse, correlation andregression analysis using Statistica package Exsel andfound that the variability of the yield was low (5.39% ),but inferior to the sum of temperatures (7.38%) andrainfall (16.63%). Statistical parameters of meteorological factors and yields indicate that betweenyield and total precipitation and the sum of effectivetemperatures there is little feedback.


Sign in / Sign up

Export Citation Format

Share Document