scholarly journals Riparian zone control on base cation concentration in boreal streams

2013 ◽  
Vol 10 (6) ◽  
pp. 3849-3868 ◽  
Author(s):  
J. L. J. Ledesma ◽  
T. Grabs ◽  
M. N. Futter ◽  
K. H. Bishop ◽  
H. Laudon ◽  
...  

Abstract. Riparian zones (RZ) are a major factor controlling water chemistry in forest streams. Base cations' (BC) concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM) approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.

2013 ◽  
Vol 10 (1) ◽  
pp. 739-785 ◽  
Author(s):  
J. L. J. Ledesma ◽  
T. Grabs ◽  
M. N. Futter ◽  
K. H. Bishop ◽  
H. Laudon ◽  
...  

Abstract. Forest riparian zones are a major in control of surface water quality. Base cation (BC) concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM) was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.


2020 ◽  
Author(s):  
Elin Jutebring Sterte ◽  
Fredrik Lidman ◽  
Emma Lindborg ◽  
Ylva Sjöberg ◽  
Hjalmar Laudon

Abstract. Understanding travel times of rain and snowmelt inputs transported through the subsurface environment to recipient surface waters is critical in many hydrological and biogeochemical investigations. In this study, a particle tracking model approach in Mike SHE was used to investigating the travel time of stream groundwater input to 14 partly nested, long-term monitored boreal sub-catchments. Based on previous studies in the area, we hypothesized that the main factor controlling groundwater travel times was catchment size. The modeled mean travel time (MTT) in the different sub-catchments ranged between 0.5 years and 3.6 years. Estimated MTTs were tested against the observed long-term winter isotopic signature (δ2H, δ18O) and chemistry (base cation concentration and pH) of the stream water. The underlying assumption was that older water would have an isotopic signature that resembles the long-term average precipitation input, while seasonal variations would be more apparent in catchments with younger water. Similarly, it was assumed that older water would be more affected by weathering, resulting in higher concentrations of base cations and higher pH. 10-year average winter values for stream chemistry were used for each sub-catchment. We found significant correlations between the estimated travel times and average water isotope signature (r = 0.80, p 


1998 ◽  
Vol 2 (2/3) ◽  
pp. 323-344 ◽  
Author(s):  
C. Neal ◽  
B. Reynolds ◽  
J. Wilkinson ◽  
T. Hill ◽  
M. Neal ◽  
...  

Abstract. Major, minor and trace element chemistry of runoff at stormflow and baseflow from 67 catchments (2 to 5 ha in area) has been determined to investigate the effects of clear felling and replanting of conifers on stream water quality across Wales. Samples, collected by local forestry workers (Forest Enterprise staff) on a campaign basis on up to eight occasions, were for 16 mature first rotation standing forest: the remainder represented areas completely clear felled from less than one to up to forty years previously. As the waters drain acidic and acid sensitive soils, acidic runoff is often encountered. However, higher pH values with associated positive alkalinities and base cation enrichments are observed due to the influence of weathering reactions within the bedrock. There is little systematic variation in water quality between baseflow and stormflow for each site indicating a complex and erratic contribution of waters from the soil and underlying parent material. 80% or more of the data points show hardly any changes with felling time, but there are a few outlier points with much higher concentrations that provide important information on the processes operative. The clearest outlier felling response is for nitrate at five of the more recently felled sites on brown earth, gley and podzolic soil types. ANC, the prime indicator of stream acidity, shows a diverse response from both high to low outlier values (>+400 to -300 μEq/l). In parallel to nitrate, aluminium, potassium and barium concentrations are higher in waters sampled up to 4 years post felling, but the time series response is even less clear than that for nitrate. Cadmium, zinc and lead and lanthanides/actinides show large variations from site to site due to localized vein ore-mineralization in the underlying bedrock. The survey provides a strong indication that forest harvesting can have marked local effects on some chemical components of runoff for the first four years after felling but that this is confined to a small number of sites where nitrate production and aluminium leaching are high. In general, deforestation leads to a reversal of acidification when the nitrate pulse is low. The variability in water quality from catchment to catchment is too high for generalized conclusions to be made over the extent of the potential changes from site to site. The value of an organised campaign of opportunistic sampling using an infrastructure of enthusiastic staff from regionally dispersed organisations associated with environmental matters (in this case the forestry industry) is highlighted.


2012 ◽  
Vol 9 (3) ◽  
pp. 3031-3069
Author(s):  
T. Grabs ◽  
K. H. Bishop ◽  
H. Laudon ◽  
S. W. Lyon ◽  
J. Seibert

Abstract. Groundwater flowing from hillslopes through riparian (near stream) soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC) concentrations profiles and groundwater levels measured in the riparian zone (RZ) of a 67 km2 catchment in Sweden. TOC exported from 13 riparian soil profiles was then estimated based on the riparian flow-concentration integration model (RIM). Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI). Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. Exports were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. From more mineral riparian gley soils, on the other hand, only small amounts with relatively time-invariant concentrations were exported. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that controls much of the spatial variability of stream water TOC. We developed an empirical regression-model based on the TWI to move beyond the plot scale to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.


1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.


2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.


2001 ◽  
Vol 5 (3) ◽  
pp. 367-378 ◽  
Author(s):  
C. Alewell ◽  
M. Armbruster ◽  
J. Bittersohl ◽  
C. D. Evans ◽  
H. Meesenburg ◽  
...  

Abstract. The reversal of freshwater acidification in the low mountain ranges of Germany is of public, political and scientific concern, because these regions are near natural ecosystems and function as an important drinking water supply. The aim of this study was to evaluate the status and trends of acidification reversal after two decades of reduced anthropogenic deposition in selected freshwaters of the low mountain ranges in the Harz, the Fichtelgebirge, the Bavarian Forest, the Spessart and the Black Forest. In response to decreased sulphate deposition, seven out of nine streams investigated had significantly decreasing sulphate concentrations (all trends were calculated with the Seasonal Kendall Test). The decrease in sulphate concentration was only minor, however, due to the release of previously stored soil sulphur. No increase was found in pH and acid neutralising capacity (defined by Reuss and Johnson, 1986). Aluminum concentrations in the streams did not decrease. Thus, no major acidification reversal can currently be noted in spite of two decades of decreased acid deposition. Nevertheless, the first signs of improvement in water quality were detected as there was a decrease in the level and frequency of extreme values of pH, acid neutralising capacity and aluminium concentrations in streams. With respect to nitrogen, no change was determined for either nitrate or ammonium concentrations in precipitation or stream water. Base cation fluxes indicate increasing net loss of base cations from all ecosystems investigated, which could be interpreted as an increase in soil acidification. The latter was due to a combination of continued high anion leaching and significant reduction of base cation deposition. No major improvement was noted in biological recovery, however, initial signs of recovery were detectable as there was re-occurrence of some single macroinvertebrate species which were formerly extinct. The results of this study have important implications for water authorities, forest managers and policy makers: the delay in acidification reversal suggests a need for ongoing intensive amelioration of waters, a careful selection of management tools to guarantee sustainable management of forests and the reduction of nitrogen deposition to prevent further acidification of soils and waters. Keywords: freshwater, acidification reversal, drinking water supply, forested catchments, Germany


2017 ◽  
Author(s):  
Ruzhen Wang ◽  
Xue Wang ◽  
Yong Jiang ◽  
Artemi Cerdà ◽  
Jinfei Yin ◽  
...  

Abstract. To understand whether base cations and micronutrients in the plant-soil system change with elevation, we investigated the patterns of base cations and micronutrients in both soils and plant tissues along three elevational gradients and three different climate zones in China. Base cations of Ca, Mg and K and micronutrients of Fe, Mn and Zn were determined in soils, trees and shrubs growing at lower and middle elevations as well as at their upper limits on Balang (subtropical, SW China), Qilian (dry-temperate, NW China) and Changbai (wet-temperate, NE China) mountains. No consistent elevational patterns were found for base cation and micronutrient concentrations in both soils and plant tissues (leaves, roots, shoots and stem sapwood). Rather, soil pH, total soil nitrogen (TN), the soil organic carbon (SOC) to TN ratio (C:N), and total soil inorganic nitrogen (TIN) determined the elevational patterns of soil exchangeable Ca and Mg. Furthermore, multiple regression models showed that soil pH and C:N were pivotal factors affecting soil Fe, Mn and Zn availabilities. In return, soil base cation and micronutrient availabilities played fundamental roles in determining the base cation and micronutrient concentrations in plant tissues. Our results highlight the importance of soil physicochemical properties (mainly SOC, C:N and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature), in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.


1992 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
N.W. Foster ◽  
M.J. Mitchell ◽  
I.K. Morrison ◽  
J.P. Shepard

Annual nutrient fluxes within two forests exposed to acidic deposition were compared for a 1-year period. Calcium (Ca2+) was the dominant cation in throughfall and soil solutions from tolerant hardwood dominated Spodosols (Podzols) at both Huntington Forest (HF), New York, and the Turkey Lakes watershed (TLW), Ontario. There was a net annual export of Ca2+ and Mg2+ from the TLW soil, whereas base cation inputs in precipitation equaled outputs at HF. In 1986, leaching losses of base cations were five times greater at TLW than at HF. A higher percentage of the base cation reserves was leached from the soil at TLW (5%) than at HF (1%). Relative to throughfall, aluminum concentrations increased in forest-floor and mineral-soil solutions, especially at HF. The TLW soil appears more sensitive to soil acidification. Deposited atmospheric acidity, however, was small in comparison with native soil acidity (total and exchangeable) and the reserves of base cations in each soil. Soil acidity and base saturation, therefore, are likely only to change slowly.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 528 ◽  
Author(s):  
Fei Gao ◽  
Gary Feng ◽  
Ming Han ◽  
Padmanava Dash ◽  
Johnie Jenkins ◽  
...  

The groundwater level in the Big Sunflower River Watershed (BSRW) in the U.S. has declined significantly in the past 30 years. Therefore, it is imperative to assess surface water resources (SWR) availability in BSRW to mitigate groundwater use for irrigation. This research applied the coupled Soil and Water Assessment Tool–Modular Groundwater Flow model (SWAT–MODFLOW) to assess SWR in BSRW. This study aimed at: (1) Assessing the reliability of SWAT–MODFLOW in BSRW, (2) analyzing temporal and spatial variations of SWR, and (3) assessing the potential availability of SWR in BSRW. Calibration and validation results showed that SWAT–MODFLOW can well simulate streamflow and groundwater levels in BSRW. Our results showed that BSRW had lower average monthly total stream resources (MSR = 8.8 × 107 m3) in growing seasons than in non-growing seasons (MSR = 11.0 × 107 m3), and monthly pond resources (MPR from 30,418 to 30,494 m3) varied less than stream resources. The proportion of sub-basins in BSRW with stream water resources greater than 700 mm was 21% in dry years (229 to 994 mm), while this increased to 35% in normal years (296 to 1141 mm) and 57% in wet years (554 to 991 mm). The Water Stress Index (WSI) ranged from 0.4 to 2.1, revealing that most of the sub-basins in BSRW have net SWR available for irrigation. Our results suggested that surface water resources might be supplementary irrigation sources to mitigate the water resources scarcity in this region.


Sign in / Sign up

Export Citation Format

Share Document