scholarly journals The role of microorganisms at different stages of ecosystem development for soil formation

2013 ◽  
Vol 10 (6) ◽  
pp. 3983-3996 ◽  
Author(s):  
S. Schulz ◽  
R. Brankatschk ◽  
A. Dümig ◽  
I. Kögel-Knabner ◽  
M. Schloter ◽  
...  

Abstract. Soil formation is the result of a complex network of biological as well as chemical and physical processes. The role of soil microbes is of high interest, since they are responsible for most biological transformations and drive the development of stable and labile pools of carbon (C), nitrogen (N) and other nutrients, which facilitate the subsequent establishment of plant communities. Forefields of receding glaciers provide unique chronosequences of different soil development stages and are ideal ecosystems to study the interaction of bacteria, fungi and archaea with their abiotic environment. In this review we give insights into the role of microbes for soil development. The results presented are based on studies performed within the Collaborative Research Program DFG SFB/TRR 38 (http://www.tu-cottbus.de/ecosystem ) and are supplemented by data from other studies. The review focusses on the microbiology of major steps of soil formation. Special attention is given to the development of nutrient cycles on the formation of biological soil crusts (BSCs) and on the establishment of plant–microbe interactions.

2013 ◽  
Vol 10 (2) ◽  
pp. 1867-1898 ◽  
Author(s):  
S. Schulz ◽  
R. Brankatschk ◽  
A. Dümig ◽  
I. Kögel-Knabner ◽  
M. Schloter ◽  
...  

Abstract. Soil formation is the result of a complex network of biological as well as chemical and physical processes. Mainly the role of soil microbes is of high interest in this respect, as they are responsible for most transformations and drive the development of stable and labile carbon and nutrient pools in soil, which facilitate the basis for the subsequent establishment of plant communities. Glacier forefields, which provide a chronosequence of soils of different age due to the continuous retreat of the ice layer as a consequence of the increasing annual temperature since the last centuries, are a nice play ground to study the interaction of bacteria, fungi and archaea with their abiotic environment at different stages of soil formation. In this review we give insights into the role of microbes for soil development on the basis of investigations which have been performed at the Damma glacier in Switzerland in the frame of two international network projects Big Link (http://www.cces.ethz.ch/projects/clench/BigLink/) and DFG SFB/TRR 38 (http://www.tu-cottbus.de/ecosystem/). The review focusses on the microbiology of three major steps of soil formation including weathering of the parental material, the development of basic nutrient cycles, the formation of soil crusts and biofilms as initial microbial network structures and the occurrence of plants respectively the setup of plant communities.


Author(s):  
James Marlatt

ABSTRACT Many people may not be aware of the extent of Kurt Kyser's collaboration with mineral exploration companies through applied research and the development of innovative exploration technologies, starting at the University of Saskatchewan and continuing through the Queen's Facility for Isotope Research. Applied collaborative, geoscientific, industry-academia research and development programs can yield technological innovations that can improve the mineral exploration discovery rates of economic mineral deposits. Alliances between exploration geoscientists and geoscientific researchers can benefit both parties, contributing to the pure and applied geoscientific knowledge base and the development of innovations in mineral exploration technology. Through a collaboration that spanned over three decades, we gained insight into the potential for economic uranium deposits around the world in Canada, Australia, USA, Finland, Russia, Gabon, Namibia, Botswana, South Africa, and Guyana. Kurt, his research team, postdoctoral fellows, and students developed technological innovations related to holistic basin analysis for economic mineral potential, isotopes in mineral exploration, and biogeochemical exploration, among others. In this paper, the business of mineral exploration is briefly described, and some examples of industry-academic collaboration innovations brought forward through Kurt's research are identified. Kurt was a masterful and capable knowledge broker, which is a key criterion for bringing new technologies to application—a grand, curious, credible, patient, and attentive communicator—whether talking about science, business, or life and with first ministers, senior technocrats, peers, board members, first nation peoples, exploration geologists, investors, students, citizens, or friends.


2021 ◽  
Vol 13 (12) ◽  
pp. 6673
Author(s):  
Lidia Luty ◽  
Kamila Musiał ◽  
Monika Zioło

The functioning of various agroecosystems is nowadays shaped by different farming systems, which may impair their functions, as well as being beneficial to them. The benefits include ecosystem services, defined as economic and noneconomic values gained by humans from ecosystems, through supporting soil formation and nutrient circulation, and the impact of agriculture on climate and biodiversity. Their mutual flow and various disturbances depend on the agroecosystem’s management method, which is associated with the type of management of agricultural land (AL) in individual farms. This paper raises a problem of transformation in the structure of three main farming systems in Poland, in 2004–2018, in relation to the implementation of 16 selected ecosystem services and their scale. Special attention was given to organic farming, as the most environmentally friendly and sustainable. The analysis demonstrates the increase in ALs in that type of production during the analyzed period of time. Disparities of transformation associated with the type of agricultural system were noticeable at the regional level, which were presented in 16 Polish voivodeships. The results of the analysis confirm that the organic system, which is an important carrier of various ecosystem services, gained a stable position. Moreover, areas with integrated farming still do not exceed 0.5% of total agricultural lands in such voivodeships. The analysis of factors influencing the deterioration or disappearance of selected environmental services characterizing agricultural systems indicates the need to depart from an intensive conventional management system.


2019 ◽  
Vol 32 (14) ◽  
pp. 4215-4234 ◽  
Author(s):  
Qin Su ◽  
Buwen Dong

Abstract Observational analysis indicates significant decadal changes in daytime, nighttime, and compound (both daytime and nighttime) heat waves (HWs) over China across the mid-1990s, featuring a rapid increase in frequency, intensity, and spatial extent. The variations of these observed decadal changes are assessed by the comparison between the present day (PD) of 1994–2011 and the early period (EP) of 1964–81. The compound HWs change most remarkably in all three aspects, with frequency averaged over China in the PD tripling that in the EP and intensity and spatial extent nearly doubling. The daytime and nighttime HWs also change significantly in all three aspects. A set of numerical experiments is used to investigate the drivers and physical processes responsible for the decadal changes of the HWs. Results indicate the predominant role of the anthropogenic forcing, including changes in greenhouse gas (GHG) concentrations and anthropogenic aerosol (AA) emissions in the HW decadal changes. The GHG changes have dominant impacts on the three types of HWs, while the AA changes make significant influences on daytime HWs. The GHG changes increase the frequency, intensity, and spatial extent of the three types of HWs over China both directly via the strengthened greenhouse effect and indirectly via land–atmosphere and circulation feedbacks in which GHG-change-induced warming in sea surface temperature plays an important role. The AA changes decrease the frequency and intensity of daytime HWs over Southeastern China through mainly aerosol–radiation interaction, but increase the frequency and intensity of daytime HWs over Northeastern China through AA-change-induced surface–atmosphere feedbacks and dynamical changes related to weakened East Asian summer monsoon.


2013 ◽  
Vol 26 (21) ◽  
pp. 8513-8528 ◽  
Author(s):  
Megan S. Mallard ◽  
Gary M. Lackmann ◽  
Anantha Aiyyer

Abstract A method of downscaling that isolates the effect of temperature and moisture changes on tropical cyclone (TC) activity was presented in Part I of this study. By applying thermodynamic modifications to analyzed initial and boundary conditions from past TC seasons, initial disturbances and the strength of synoptic-scale vertical wind shear are preserved in future simulations. This experimental design allows comparison of TC genesis events in the same synoptic setting, but in current and future thermodynamic environments. Simulations of both an active (September 2005) and inactive (September 2009) portion of past hurricane seasons are presented. An ensemble of high-resolution simulations projects reductions in ensemble-average TC counts between 18% and 24%, consistent with previous studies. Robust decreases in TC and hurricane counts are simulated with 18- and 6-km grid lengths, for both active and inactive periods. Physical processes responsible for reduced activity are examined through comparison of monthly and spatially averaged genesis-relevant parameters, as well as case studies of development of corresponding initial disturbances in current and future thermodynamic conditions. These case studies show that reductions in TC counts are due to the presence of incipient disturbances in marginal moisture environments, where increases in the moist entropy saturation deficits in future conditions preclude genesis for some disturbances. Increased convective inhibition and reduced vertical velocity are also found in the future environment. It is concluded that a robust decrease in TC frequency can result from thermodynamic changes alone, without modification of vertical wind shear or the number of incipient disturbances.


2004 ◽  
Vol 104 (2) ◽  
pp. 27-34 ◽  
Author(s):  
Theodore W. Awadzi ◽  
M. A. Cobblah ◽  
Henrik Breuning-Madsen

2021 ◽  
Vol 21 (3) ◽  
pp. 326-327
Author(s):  
Christine Okali

Spriggs, J., Chambers, B. and Kayrooz. C. 2019: Towards Collaborative Research in International Development: The Central Role of Social Science. Edward Elgar Publishing. 244 pp. £75. ISBN: 978 1 78990 368 3 (hardcover).


Sign in / Sign up

Export Citation Format

Share Document